Backward reconstruction in acoustical holography based on iterative inversion techniques

1988 ◽  
Vol 84 (S1) ◽  
pp. S172-S172
Author(s):  
M. R. Bai ◽  
A. L. Pate
Geophysics ◽  
1978 ◽  
Vol 43 (5) ◽  
pp. 886-898 ◽  
Author(s):  
D. Loewenthal ◽  
P. R. Gutowski ◽  
S. Treitel

Seismograms are routinely used to extract information about the internal structure of the subsurface. The basic philosophy is to idealize the earth with a simple model characterized by resolvable parameters. Further, we assume that the seismograms obey simple mathematical relations, such as the wave equation, and that these seismograms are uniquely determined by the given parameters. The computation of seismograms for a given model whose parameters are specified gives rise to the “forward problem”. The determination of the parameters of the model from the seismogram generally constitutes the “inverse problem”. While the forward problem is often relatively simple, the inverse problem tends to be much more involved. One of the few cases for which the inverse problem has a simple direct solution is given for a model consisting of a homogeneous one‐dimensional layered medium. The layers overlie a homogeneous half‐space, and are excited by a normally incident plane wave. Such direct solutions to the inverse problem are in contrast to the iterative inversion techniques of the Gilbert‐Backus type. We have chosen to treat the inverse problem for the seismogram escaping into the homogeneous substratum, i.e., the transmission seismogram. We do so because this time series is a simple autoregressive, or all‐pole process. The problem is studied both with and without white noise. The Wiener‐Levinson algorithm has been found to be well suited for the direct inversion of the noise‐free case, while the “maximum entropy” algorithm is generally more appropriate for noisy data. Numerical examples serve to clarify and illustrate these points.


1990 ◽  
Vol 45 (3) ◽  
pp. 345-355
Author(s):  
J. Helgesen ◽  
I. Brevik ◽  
E. Berg
Keyword(s):  

2007 ◽  
Vol 15 (01) ◽  
pp. 49-61 ◽  
Author(s):  
SUNG-IL KIM ◽  
JEONG-GUON IH ◽  
JI-HOON JEONG

This paper suggests the use of rigid reflectors to provide additional information for source reconstruction in near-field acoustical holography based on the inverse boundary element method. The additional field pressure and transfer matrix equations introduced provide a virtual increase in the measurement data without increasing the number of sensors or altering their arrangement, which could cost more than using reflectors. In order to validate this method, we successfully reconstruct a vibrating ellipse.


2019 ◽  
Vol 38 (6) ◽  
pp. 474-479
Author(s):  
Mohamed G. El-Behiry ◽  
Said M. Dahroug ◽  
Mohamed Elattar

Seismic reservoir characterization becomes challenging when reservoir thickness goes beyond the limits of seismic resolution. Geostatistical inversion techniques are being considered to overcome the resolution limitations of conventional inversion methods and to provide an intuitive understanding of subsurface uncertainty. Geostatistical inversion was applied on a highly compartmentalized area of Sapphire gas field, offshore Nile Delta, Egypt, with the aim of understanding the distribution of thin sands and their impact on reservoir connectivity. The integration of high-resolution well data with seismic partial-angle-stack volumes into geostatistical inversion has resulted in multiple elastic property realizations at the desired resolution. The multitude of inverted elastic properties are analyzed to improve reservoir characterization and reflect the inversion nonuniqueness. These property realizations are then classified into facies probability cubes and ranked based on pay sand volumes to quantify the volumetric uncertainty in static reservoir modeling. Stochastic connectivity analysis was also applied on facies models to assess the possible connected volumes. Sand connectivity analysis showed that the connected pay sand volume derived from the posterior mean of property realizations, which is analogous to deterministic inversion, is much smaller than the volumes generated by any high-frequency realization. This observation supports the role of thin interbed reservoirs in facilitating connectivity between the main sand units.


Sign in / Sign up

Export Citation Format

Share Document