Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment

2006 ◽  
Vol 119 (6) ◽  
pp. 3694-3706 ◽  
Author(s):  
Alexander N. Gavrilov ◽  
Peter N. Mikhalevsky
2021 ◽  
Author(s):  
Rajka Juhrbandt ◽  
Suvarchal Cheedela ◽  
Nikolay Koldunov ◽  
Thomas Jung

<p>The recently completed Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) can serve as reference to evaluate current and future ocean state of the Arctic Ocean. With this premise, we perform a virtual MOSAiC expedition in historical and ssp370-scenario experiments in data generated by CMIP6 models.<br><br>The timespan covered ranges from preindustrial times (1851-1860) through present-day up to a 4K world (2091-2100). Early results using AWI-CM model, suggest that for scenario simulations a thinning of the colder surface layer and a warming of the layer between 200 and 1200 m along the MOSAiC path can be expected, while there is no significant change in temperature below this depth. Results from other models will be presented.<br><br>The Python-centric tool used for the analysis simplifies preprocessing of a pool of CMIP6 data and selecting data on space-time trajectory. It exposes an interface that is agnostic to underlying model or its grid type. Code snippets are presented along to demonstrate the tool's ease of use with a hope to inspire such virtual field campaigns using other past observations or arbitrary trajectories.</p>


1978 ◽  
Vol 64 (S1) ◽  
pp. S46-S46
Author(s):  
J. Zittel ◽  
G. W. Shepard ◽  
I. Dyer ◽  
A. B. Baggeroer

1963 ◽  
Vol 35 (10) ◽  
pp. 1645-1648 ◽  
Author(s):  
R. H. Mellen ◽  
H. W. Marsh

1983 ◽  
Vol 74 (S1) ◽  
pp. S1-S2
Author(s):  
Arthur H. Baggeroer ◽  
Gregory L. Duckworth

2013 ◽  
Vol 7 (2) ◽  
pp. 1495-1532 ◽  
Author(s):  
B. A. Blazey ◽  
M. M. Holland ◽  
E. C. Hunke

Abstract. Sea ice cover in the Arctic Ocean is a continued focus of attention. This study assesses the capability of hindcast simulations of the Community Climate System Model (CCSM) to reproduce observed snow depths and densities overlying the Arctic Ocean sea ice. The model is evaluated using measurements provided by historic Russian polar drift stations. Following the identification of seasonal biases produced in the simulations, the thermodynamic transfer through the snow – ice column is perturbed to determine model sensitivity to these biases. This study concludes that perturbations on the order of the observed biases result in modification of the annual mean conductive flux of 0.5 W m−2 relative to an unmodified simulation. The results suggest that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. Consequently, we suggest that the inclusion of additional snow evolution processes such as blowing snow, densification, and seasonal changes in snow conductivity in sea ice models would increase the fidelity of the model with respect to the physical system. Moreover, our results suggest that simulated high latitude precipitation biases have important effects on the simulated ice conditions, resulting in impacts on the Arctic climate in general in large-scale climate.


1965 ◽  
Author(s):  
R. H. Mellen ◽  
H. W. Marsh

2004 ◽  
Vol 17 (23) ◽  
pp. 4485-4497 ◽  
Author(s):  
I. V. Polyakov ◽  
G. V. Alekseev ◽  
L. A. Timokhov ◽  
U. S. Bhatt ◽  
R. L. Colony ◽  
...  

Abstract Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50–80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s–40s and in recent decades and two cold periods earlier in the century and in the 1960s–70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland–Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air–sea–ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions.


Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1081-1102
Author(s):  
Amy Solomon ◽  
Céline Heuzé ◽  
Benjamin Rabe ◽  
Sheldon Bacon ◽  
Laurent Bertino ◽  
...  

Abstract. The Arctic climate system is rapidly transitioning into a new regime with a reduction in the extent of sea ice, enhanced mixing in the ocean and atmosphere, and thus enhanced coupling within the ocean–ice–atmosphere system; these physical changes are leading to ecosystem changes in the Arctic Ocean. In this review paper, we assess one of the critically important aspects of this new regime, the variability of Arctic freshwater, which plays a fundamental role in the Arctic climate system by impacting ocean stratification and sea ice formation or melt. Liquid and solid freshwater exports also affect the global climate system, notably by impacting the global ocean overturning circulation. We assess how freshwater budgets have changed relative to the 2000–2010 period. We include discussions of processes such as poleward atmospheric moisture transport, runoff from the Greenland Ice Sheet and Arctic glaciers, the role of snow on sea ice, and vertical redistribution. Notably, sea ice cover has become more seasonal and more mobile; the mass loss of the Greenland Ice Sheet increased in the 2010s (particularly in the western, northern, and southern regions) and imported warm, salty Atlantic waters have shoaled. During 2000–2010, the Arctic Oscillation and moisture transport into the Arctic are in-phase and have a positive trend. This cyclonic atmospheric circulation pattern forces reduced freshwater content on the Atlantic–Eurasian side of the Arctic Ocean and freshwater gains in the Beaufort Gyre. We show that the trend in Arctic freshwater content in the 2010s has stabilized relative to the 2000s, potentially due to an increased compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the rest of the Arctic Ocean. However, large inter-model spread across the ocean reanalyses and uncertainty in the observations used in this study prevent a definitive conclusion about the degree of this compensation.


2020 ◽  
Author(s):  
Amy Solomon ◽  
Céline Heuzé ◽  
Benjamin Rabe ◽  
Sheldon Bacon ◽  
Laurent Bertino ◽  
...  

Abstract. The Arctic climate system is rapidly transitioning into a new regime with a reduction in the extent of sea ice, enhanced mixing in the ocean and atmosphere, and thus enhanced coupling within the ocean-ice-atmosphere system; these physical changes are leading to ecosystem changes in the Arctic Ocean. In this review paper, we assess one of the critically important aspects of this new regime, the variability of Arctic freshwater, which plays a fundamental role in the Arctic climate system by impacting ocean stratification and sea ice formation. Liquid and solid freshwater exports also affect the global climate system, notably by impacting the global ocean overturning circulation. In this review paper we assess to what extent observations during the 2010–2019 period are sufficient to estimate the Arctic freshwater budget with greater certainty than previous assessments and how this budget has changed relative to the 2000–2010 period. We include discussions of processes not included in previous assessments, such as run off from the Greenland Ice Sheet, the role of snow on sea ice, and vertical redistribution. We show that the trend in Arctic freshwater in the 2010s has stabilized relative to the 2000s due to an increased compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins. Notably, the sea ice cover has become more seasonal and more mobile, the mass loss of the Greenland ice sheet has shifted from the western to the eastern part, and the import of subpolar waters into the Arctic has increased.


Sign in / Sign up

Export Citation Format

Share Document