Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years

2004 ◽  
Vol 17 (23) ◽  
pp. 4485-4497 ◽  
Author(s):  
I. V. Polyakov ◽  
G. V. Alekseev ◽  
L. A. Timokhov ◽  
U. S. Bhatt ◽  
R. L. Colony ◽  
...  

Abstract Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50–80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s–40s and in recent decades and two cold periods earlier in the century and in the 1960s–70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland–Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air–sea–ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions.

2012 ◽  
Vol 69 (5) ◽  
pp. 852-863 ◽  
Author(s):  
Agnieszka Beszczynska-Möller ◽  
Eberhard Fahrbach ◽  
Ursula Schauer ◽  
Edmond Hansen

Abstract Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E. 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. – ICES Journal of Marine Science, 69: 852–863. The variability in Atlantic water temperature and volume transport in the West Spitsbergen Current (WSC), based on measurements by an array of moorings in Fram Strait (78°50′N) over the period 1997–2010, is addressed. The long-term mean net volume transport in the current of 6.6 ± 0.4 Sv (directed northwards) delivered 3.0 ± 0.2 Sv of Atlantic water (AW) warmer than 2°C. The mean temperature of the AW inflow was 3.1 ± 0.1°C. On interannual time-scales, a nearly constant volume flux in the WSC core (long-term mean 1.8 ± 0.1 Sv northwards, including 1.3 ± 0.1 Sv of AW warmer than 2°C, and showing no seasonal variability) was accompanied by a highly variable transport of 2–6 Sv in the offshore branch (long-term mean of 5 ± 0.4 Sv, strong seasonal variability, and 1–2 Sv of warm AW). Two warm anomalies were found in the AW passing through Fram Strait in 1999–2000 and 2005–2007. For the period 1997–2010, there was a positive linear trend in the AW mean temperature of 0.06°C year−1, but no statistically significant trend was observed in the AW volume transport. A possible impact of warming on AW propagation in the Arctic Ocean and properties of the outflow to the North Atlantic are also discussed.


1978 ◽  
Vol 64 (S1) ◽  
pp. S46-S46
Author(s):  
J. Zittel ◽  
G. W. Shepard ◽  
I. Dyer ◽  
A. B. Baggeroer

2021 ◽  
Author(s):  
Ilka Peeken ◽  
Elisa Bergami ◽  
Ilaria Corsi ◽  
Benedikt Hufnagl ◽  
Christian Katlein ◽  
...  

<p>Marine plastic pollution is a growing worldwide environmental concern as recent reports indicate that increasing quantities of litter disperse into secluded environments, including Polar Regions. Plastic degrades into smaller fragments under the influence of sunlight, temperature changes, mechanic abrasion and wave action resulting in small particles < 5mm called microplastics (MP). Sea ice cores, collected in the Arctic Ocean have so far revealed extremely high concentrations of very small microplastic particles, which might be transferred in the ecosystem with so far unknown consequences for the ice dependant marine food chain.  Sea ice has long been recognised as a transport vehicle for any contaminates entering the Arctic Ocean from various long range and local sources. The Fram Strait is hereby both, a major inflow gateway of warm Atlantic water, with any anthropogenic imprints and the major outflow region of sea ice originating from the Siberian shelves and carried via the Transpolar Drift. The studied sea ice revealed a unique footprint of microplastic pollution, which were related to different water masses and indicating different source regions. Climate change in the Arctic include loss of sea ice, therefore, large fractions of the embedded plastic particles might be released and have an impact on living systems. By combining modeling of sea ice origin and growth, MP particle trajectories in the water column as well as MPs long-range transport via particle tracking and transport models we get first insights  about the sources and pathways of MP in the Arctic Ocean and beyond and how this might affect the Arctic ecosystem.</p>


2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

2015 ◽  
Vol 132 ◽  
pp. 128-152 ◽  
Author(s):  
Bert Rudels ◽  
Meri Korhonen ◽  
Ursula Schauer ◽  
Sergey Pisarev ◽  
Benjamin Rabe ◽  
...  

2020 ◽  
Author(s):  
Léon Chafik ◽  
Sara Broomé

<p>The Arctic Ocean has been receiving more of the warm and saline Atlantic Water in the past decades. This water mass enters the Arctic Ocean via two Arctic gateways: the Barents Sea Opening and the Fram Strait. Here, we focus on the fractionation of Atlantic Water at these two gateways using a Lagrangian approach based on satellite-derived geostrophic velocities. Simulated particles are released at 70N at the inner and outer branch of the North Atlantic current system in the Nordic Seas. The trajectories toward the Fram Strait and Barents Sea Opening are found to be largely steered by the bottom topography and there is an indication of an anti-phase relationship in the number of particles reaching the gateways. There is, however, a significant cross-over of particles from the outer branch to the inner branch and into the Barents Sea, which is found to be related to high eddy kinetic energy between the branches. This cross-over may be important for Arctic climate variability.</p>


Author(s):  
Igor A. Dmitrenko ◽  
Sergey A. Kirillov ◽  
L. Bruno Tremblay ◽  
Dorothea Bauch ◽  
Jens A. Hölemann ◽  
...  

ARCTIC ◽  
1963 ◽  
Vol 16 (1) ◽  
pp. 8 ◽  
Author(s):  
L.K. Coachman ◽  
C.A. Barnes

Re-evaluates sixty years' oceanographic data from the Arctic Ocean, examining nearly 300 deep-water stations, and using the "core-layer" method of Wust to interpret the movement of the Atlantic layer. Stations are grouped in 16 areas and the average curve for each group plotted on a temperature-salinity diagram. Temperature and salinity changes which take place in the Atlantic water while and entity in the Arctic Basin are graphed. The temperature maximum is reduced by about 3.5 C, and the salinity at max. temperature is reduced by about 0.2 %. Superimposed on the T-S relationship is an arbitrary scale indicating percentage retention of the original characteristics. The velocity of the Atlantic layer is found (from current velocity, eddy coefficients and station data) to range 1-10 cm/sec and values of Kz (vertical eddy coefficient) generally to range 1-20 sq cm/sec. Percentage retention of characteristics from the T-S diagram is mapped to suggest a relation between the flow of Atlantic water and bathymetry, distance, time, as well as the T-S features. Assuming the velocity along the core to be 3 cm/sec, the constant vertical eddy coefficient to be 10 sq cm/sec, and with other assumptions on temperature distribution, an estimate of 8,000,000 sq cm/sec is obtained for the constant lateral eddy coefficient.


Sign in / Sign up

Export Citation Format

Share Document