scholarly journals High‐frequency reflection coefficient of sea ice

1992 ◽  
Vol 92 (4) ◽  
pp. 2342-2342
Author(s):  
Gary Steven Sammelmann
2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


2019 ◽  
Vol 124 (9) ◽  
pp. 2728-2750 ◽  
Author(s):  
L. Castro de la Guardia ◽  
Y. Garcia‐Quintana ◽  
M. Claret ◽  
X. Hu ◽  
E. D. Galbraith ◽  
...  

2020 ◽  
Vol 37 (5) ◽  
pp. 515-531 ◽  
Author(s):  
Yang Wu ◽  
Zhaomin Wang ◽  
Chengyan Liu ◽  
Xia Lin

1993 ◽  
Vol 256 ◽  
pp. 499-534 ◽  
Author(s):  
M. C. A. M. Peters ◽  
A. Hirschberg ◽  
A. J. Reijnen ◽  
A. P. J. Wijnands

The propagation of plane acoustic waves in smooth pipes and their reflection at open pipe terminations have been studied experimentally. The accuracy of the measurements is determined by comparison of experimental data with results of linear theory for the propagation of acoustic waves in a pipe with a quiescent fluid. The damping and the reflection at an unflanged pipe termination are compared.In the presence of a fully developed turbulent mean flow the measurements of the damping confirm the results of Ronneberger & Ahrens (1977). In the high-frequency limit the quasi-laminar theory of Ronneberger (1975) predicts accurately the convective effects on the damping of acoustic waves. For low frequencies a simple theory combining the rigid-plate model of Ronneberger & Ahrens (1977) with the theoretical approach of Howe (1984) yields a fair prediction of the influence of turbulence on the shear stress. The finite response time of the turbulence near the wall to the acoustic perturbations has to be taken into account in order to explain the experimental data. The model yields a quasi-stationary limit of the damping which does not take into account the fundamental difference between the viscous and thermal dissipation observed for low frequencies.Measurements of the nonlinear behaviour of the reflection properties for unflanged pipe terminations with thin and thick walls in the absence of a mean flow confirm the theory of Disselhorst & van Wijngaarden (1980), for the low-frequency limit. It appears however that a two-dimensional theory such as proposed by Disselhorst & van Wijngaarden (1980) for the high-frequency limit underestimates the acoustical energy absorption by vortex shedding by a factor 2.5.The measured influence of wall thickness on the reflection properties of an open pipe end confirms the linear theory of Ando (1969). In the presence of a mean flow the end correction δ of an unflanged pipe end varies from the value at the high-Strouhal-number limit of δ/a = 0.61, with a the pipe radius, which is close to the value in the absence of a mean flow given by Levine & Schwinger (1948) of δ/a = 0.6133, to a value of δ/a = 0.19 in the low-Strouhal-number limit which is close to the value predicted by Rienstra (1983) of δ/a = 0.26.The pressure reflection coefficient is found to agree with the theoretical predictions by Munt (1977, 1990) and Cargill (1982b) in which a full Kutta condition is included. The accuracy of the theory is fascinating in view of the dramatic simplifications introduced in the theory. For a thick-walled pipe end and a pipe terminated by a horn the end correction behaviour is similar. It is surprising that the nonlinear behaviour at low frequencies and high acoustic amplitudes in the absence of mean flow does not influence the end correction significantly.The aero-acoustic behaviour of the pipe end is dramatially influenced by the presence of a horn. In the presence of a mean flow the horn is a source of sound for a critical range of the Strouhal number.The high accuracy of the experimental data suggests that acoustic measurements can be used for a systematic study of turbulence in unsteady flow and of unsteady flow separation.


2020 ◽  
Author(s):  
Cale A. Miller ◽  
Christina Bonsell ◽  
Nathan D. McTigue ◽  
Amanda L. Kelley

Abstract. The western Arctic Ocean, including its shelves and coastal habitats, has become a focus in ocean acidification research over the past decade as the colder waters of the region and the reduction of sea ice appear to promote the uptake of excess atmospheric CO2. Due to seasonal sea ice coverage, high-frequency monitoring of pH or other carbonate chemistry parameters is typically limited to infrequent ship-based transects during ice-free summers. This approach has failed to capture year-round nearshore carbonate chemistry dynamics which is modulated by biological metabolism in response to abundant allochthonous organic matter to the narrow shelf of the Beaufort Sea and adjacent regions. The coastline of the Beaufort Sea comprises a series of lagoons that account for > 50 % of the land-sea interface. The lagoon ecosystems are novel features that cycle between open and closed phases (i.e., ice-free, and ice covered, respectively). In this study, we collected high-frequency pH, salinity, temperature, and PAR measurements in association with the Beaufort Lagoon Ecosystem LTER for an entire calendar year in Kaktovik Lagoon, Alaska, USA, capturing two open water phases and one closed phase. Hourly pH variability during the open water phases are some of the fastest rates reported, exceeding 0.4 units. Baseline pH varied substantially between open phase 2018 and open phase 2019 with a difference of ~ 0.2 units despite similar hourly rates of change. Salinity-pH relationships were mixed during all three phases displaying no correlation in open 2018, a negative correlation in closed 2018–2019, and positive correlation during open 2019. The high-frequency of pH variability could partially be explained by photosynthesis-respiration cycles as correlation coefficients between daily average pH and PAR were 0.46 and 0.64 for open 2018 and open 2019 phases, respectively. The estimated annual daily average CO2 efflux was 5.9 ± 19.3 mmol m−2 d−1, which is converse to the negative influx of CO2 estimated for the coastal Beaufort Sea despite exhibiting extreme variability. Considering the geomorphic differences in Beaufort Sea lagoons, further investigation is needed to assess if there are periods of the open phase in which all lagoons are sources of carbon to the atmosphere, potentially offsetting the predicted sink capacity of the greater Beaufort Sea.


Sign in / Sign up

Export Citation Format

Share Document