scholarly journals Time domain acoustic absorption: A unified model for linear and nonlinear acoustics

1994 ◽  
Vol 95 (5) ◽  
pp. 2854-2855
Author(s):  
Kenneth D. Rolt
2016 ◽  
Vol 34 (13) ◽  
pp. 3035-3046 ◽  
Author(s):  
Andres Macho ◽  
Maria Morant ◽  
Roberto Llorente

Author(s):  
Godine Kok Yan Chan ◽  
Paul D. Sclavounos ◽  
Jason Jonkman ◽  
Gregory Hayman

A hydrodynamics computer module was developed to evaluate the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The new formulation allows linear and nonlinear loads on floating bodies to be computed in the time domain. It also avoids the computationally intensive evaluation of temporal and spatial gradients of the velocity potential in the Bernoulli equation and the discretization of the nonlinear free surface. The new hydrodynamics module computes linear and nonlinear loads — including hydrostatic, Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause ringing, springing, and slow-drift loads — directly in the time domain. The time-domain Green function is used to solve the linear and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Pacilli ◽  
P. Sebbah ◽  
P. Sixou ◽  
C. Vanneste ◽  
H. Guillard

AbstractWe investigate the optical limiting capabilities of composite materials consisting of nematic liquid crystal inclusions within a polymer matrix in the millisecond and CW regime. Preparation of the composite has been optimized to decrease the operation voltage. Clear evidence of light induced reorientation is observed. A numerical model is proposed to describe multiple linear and nonlinear light scattering in the time domain in this medium. Numerical simulations are compared to experiment and confirm promising limiting characteristics of such materials.


Sign in / Sign up

Export Citation Format

Share Document