Fluid pressure distribution due to outer hair cell excitation in a 3‐D dual chamber model of cochlea

1999 ◽  
Vol 106 (4) ◽  
pp. 2204-2204 ◽  
Author(s):  
Anand A Parthasarathi ◽  
Karl Grosh ◽  
Tianying Ren ◽  
Alfred L Nuttall
2021 ◽  
Author(s):  
Nam Hyun Cho ◽  
Haobing Wang ◽  
Sunil Puria

Because it is difficult to directly observe the morphology of the living cochlea, our ability to infer the mechanical functioning of the living ear has been limited. Nearly all of our knowledge about cochlear morphology comes from postmortem tissue that was fixed and processed using procedures that possibly distort the structures and fluid spaces of the organ of Corti. In this study, optical coherence tomography was employed to obtain in vivo and postmortem micron-scale volumetric images of the high-frequency hook region of the gerbil cochlea through the round-window membrane. The anatomical structures and fluid spaces of the organ of Corti were segmented and quantified in vivo and over a 90-minute postmortem period. The results show that some aspects of the organ of Corti are significantly altered over the course of death, such as the volumes of the fluid spaces, whereas the dimensions of other features change very little. We postulate that the fluid space of the outer tunnel and its surrounding tectal cells form a resonant structure that can affect the motion of the reticular lamina and thereby have a profound effect on outer-hair-cell transduction and thus cochlear amplification. In addition, the in vivo fluid pressure of the inner spiral sulcus is postulated to effectively inflate the connected sub-tectorial gap between the tectorial membrane and the reticular lamina. This gap height decreases after death, which is hypothesized to reduce and disrupt hair-cell transduction.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Kristopher R. Schumacher ◽  
Aleksander S. Popel ◽  
Bahman Anvari ◽  
William E. Brownell ◽  
Alexander A. Spector

Cell membrane tethers are formed naturally (e.g., in leukocyte rolling) and experimentally to probe membrane properties. In cochlear outer hair cells, the plasma membrane is part of the trilayer lateral wall, where the membrane is attached to the cytoskeleton by a system of radial pillars. The mechanics of these cells is important to the sound amplification and frequency selectivity of the ear. We present a modeling study to simulate the membrane deflection, bending, and interaction with the cytoskeleton in the outer hair cell tether pulling experiment. In our analysis, three regions of the membrane are considered: the body of a cylindrical tether, the area where the membrane is attached and interacts with the cytoskeleton, and the transition region between the two. By using a computational method, we found the shape of the membrane in all three regions over a range of tether lengths and forces observed in experiments. We also analyze the effects of biophysical properties of the membrane, including the bending modulus and the forces of the membrane adhesion to the cytoskeleton. The model’s results provide a better understanding of the mechanics of tethers pulled from cell membranes.


2004 ◽  
Vol 6 (2) ◽  
pp. 96-96
Author(s):  
Mei Zhang ◽  
Patrick J. Antonelli
Keyword(s):  

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Joe Tien ◽  
Le Li ◽  
Ozgur Ozsun ◽  
Kamil L. Ekinci

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading. Remarkably, the source of this delay is the slight (∼100 nm in the cases examined here) distension of the walls of the device under pressure. Finite-element models show that the dynamics of interstitial pressure can be described as an instantaneous jump, followed by axial and transverse diffusion, until the steady pressure distribution is reached. The dynamics follow scaling laws that enable estimation of a gel's poroelastic constants from time-resolved measurements of interstitial fluid pressure.


2000 ◽  
Vol 275 (36) ◽  
pp. 28000-28005 ◽  
Author(s):  
Federico Kalinec ◽  
Ming Zhang ◽  
Raul Urrutia ◽  
Gilda Kalinec

Sign in / Sign up

Export Citation Format

Share Document