FDTD modeling of low‐frequency sea surface reverberation in the presence of a near‐surface bubble layer

2000 ◽  
Vol 107 (5) ◽  
pp. 2922-2922
Author(s):  
Richard S. Keiffer ◽  
Robert A. Zingarelli ◽  
Jorge C. Novarini
2002 ◽  
Vol 112 (5) ◽  
pp. 2424-2424
Author(s):  
R. Lee Culver ◽  
David Bradley ◽  
Jon Reeves

2002 ◽  
Vol 53 (6) ◽  
pp. 1005 ◽  
Author(s):  
Steven G. Wilson ◽  
Timothy Pauly ◽  
Mark G. Meekan

Hydroacoustic surveys were used to examine zooplankton distributions in coastal waters off Ningaloo Reef, Western Australia. Surveys were timed to coincide with the seasonal aggregation of whale sharks, Rhincodon typus, and other large zooplanktivores in these waters. The surveys examined scattering features of lagoon/shelf fronts, a series of cross-shelf transects and waters surrounding whale sharks swimming at the surface. These suggested that lagoon waters flow intrusively into shelf waters at reef passages in a layered exchange. Cross-shelf transects identified three vertical scattering layers: a surface bubble layer; a near-surface minimum layer; and a bottom maximum layer. Regions of intense mixing of lagoon and shelf waters were detected seaward and to the north of reef passages. Integrated acoustic mean volume backscatter of the bottom maximum layer increased with depth and distance offshore. Large subsurface aggregations of unidentified fauna were detected beneath whale sharks in the same area that manta rays and surface schools of euphausiids were also observed.


1997 ◽  
Vol 51 (3) ◽  
pp. 225-250 ◽  
Author(s):  
Michael J. Buckingham

1993 ◽  
Vol 94 (3) ◽  
pp. 1784-1784
Author(s):  
Jeffrey A. Schindall ◽  
Ronald A. Roy ◽  
Lawrence A. Crum ◽  
William M. Carey

Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2017 ◽  
Vol 30 (22) ◽  
pp. 9195-9211 ◽  
Author(s):  
John T. Fasullo ◽  
Peter R. Gent

Abstract An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.


2017 ◽  
Vol 56 (4) ◽  
pp. 1083-1098 ◽  
Author(s):  
Matthew E. Jeglum ◽  
Sebastian W. Hoch ◽  
Derek D. Jensen ◽  
Reneta Dimitrova ◽  
Zachariah Silver

AbstractLarge temperature fluctuations (LTFs), defined as a drop of the near-surface temperature of at least 3°C in less than 30 min followed by a recovery of at least half of the initial drop, were frequently observed during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. Temperature time series at over 100 surface stations were examined in an automated fashion to identify and characterize LTFs. LTFs occur almost exclusively at night and at locations elevated 50–100 m above the basin floors, such as the east slope of the isolated Granite Mountain (GM). Temperature drops associated with LTFs were as large as 13°C and were typically greatest at heights of 4–10 m AGL. Observations and numerical simulations suggest that LTFs are the result of complex flow interactions of stably stratified flow with a mountain barrier and a leeside cold-air pool (CAP). An orographic wake forms over GM when stably stratified southwesterly nocturnal flow impinges on GM and is blocked at low levels. Warm crest-level air descends in the lee of the barrier, and the generation of baroclinic vorticity leads to periodic development of a vertically oriented vortex. Changes in the strength or location of the wake and vortex cause a displacement of the horizontal temperature gradient along the slope associated with the CAP edge, resulting in LTFs. This mechanism explains the low frequency of LTFs on the west slope of GM as well as the preference for LTFs to occur at higher elevations later at night, as the CAP depth increases.


Sign in / Sign up

Export Citation Format

Share Document