scholarly journals Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver

2013 ◽  
Vol 133 (5) ◽  
pp. 3263-3263
Author(s):  
Kevin J. Haworth ◽  
Vasant A. Salgaonkar ◽  
Nicholas M. Corregan ◽  
Christy K. Holland ◽  
T. Douglas Mast
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1716 ◽  
Author(s):  
Yuanzhi Yao ◽  
Ke Yang ◽  
Yang Cao ◽  
Xuan Zhou ◽  
Jinshun Xu ◽  
...  

Microbubbles (MBs) are considered as an important enhancer for high intensity focused ultrasound (HIFU) treatment of benign or malignant tumors. Recently, different sizes of gas-filled bubbles have been investigated to improve the therapeutic efficiency of HIFU thermal ablation and reduce side effects associated with ultrasound power and irradiation time. However, nanobubbles (NBs) as an ultrasound contrast agent for synergistic therapy of HIFU thermal ablation remain controversial due to their small nano-size in diameter. In this study, phospholipid-shell and gas-core NBs with a narrow size range of 500–600 nm were developed. The synergistic effect of NBs for HIFU thermal ablation was carefully studied both in excised bovine livers and in breast tumor models of rabbits, and made a critical comparison with that of commercial SonoVue microbubbles (SonoVue MBs). In addition, the pathological changes of the targeted area in tumor tissue after HIFU ablation were further investigated. Phosphate buffer saline (PBS) was used as the control. Under the same HIFU parameters, the quantitative echo intensity of B-mode ultrasound image and the volume of coagulative necrosis in lipid NBs groups were significantly higher and larger than that in PBS groups, but could not be demonstrated a difference to that in SonoVue MBs groups bothex vivoandin vivo. These results showed that the synergistic effect of lipid NBs for HIFU thermal ablation were similar with that of SonoVue MBs, and further indicate that lipid NBs could potentially become an enhancer for HIFU thermal ablation of tumors.


2018 ◽  
Vol 40 (5) ◽  
pp. 310-324 ◽  
Author(s):  
Sheng-Min Huang ◽  
Hao-Li Liu ◽  
Dai-Wei Li ◽  
Meng-Lin Li

High-intensity focused ultrasound (HIFU) has demonstrated the capacity to be used for local thermal ablation in clinical surgery; however, relying solely on conventional ultrasound B-mode imaging to monitor HIFU thermal ablation and determine ablation levels remains a challenge. Here, we experimentally demonstrate the ability to use Nakagami imaging to monitor HIFU-induced thermal lesions in porcine livers ex vivo. Ultrasonic Nakagami imaging has been proven to be able to characterize tissues with different scatterer concentrations and distributions. The pathological sections from HIFU thermally ablated porcine liver tissues reveal that normal and denatured tissues significantly differ in scatterer concentration and distribution. Therefore, we believe that Nakagami imaging can be used to monitor thermal ablation by tracing Nakagami parameter changes in liver tissues. The ex vivo porcine liver experiments were performed using a homemade HIFU device synchronized with a commercial diagnostic ultrasound scanner to obtain the ultrasound envelope data before and after thermal ablation. These data were used to evaluate the performance of thermal lesion characterization using Nakagami imaging and were compared with those derived from conventional B-mode imaging. Experimental results showed that Nakagami imaging can be used to identify thermal lesions, which are difficult to visualize using conventional B-mode imaging because there is no apparent bubble formation. In cases with apparent bubble formation, Nakagami imaging could provide a more accurate estimation of lesion size and position. In addition, the Nakagami imaging algorithm is characterized by low computational complexity, which means it can be easily integrated as postprocessing for existing array imaging systems.


Author(s):  
Yufeng Zhou ◽  
Bryan W. Cunitz ◽  
Barbrina Dunmire ◽  
Yak‐Nam Wang ◽  
Steven G. Karl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document