The underwater sound field from impact pile driving: Observations and modeling of key features in the time domain

2017 ◽  
Vol 141 (5) ◽  
pp. 3991-3991
Author(s):  
Peter H. Dahl ◽  
David R. Dall'Osto
1988 ◽  
Vol 110 (4) ◽  
pp. 545-551 ◽  
Author(s):  
A. Cummings ◽  
I.-J. Chang

A quasi one-dimensional analysis of sound transmission in a flow duct lined with an array of nonlinear resonators is described. The solution to the equations describing the sound field and the hydrodynamic flow in the neighborhood of the resonator orifices is performed numerically in the time domain, with the object of properly accounting for the nonlinear interaction between the acoustic field and the resonators. Experimental data are compared to numerical computations in the time domain and generally very good agreement is noted. The method described here may readily be extended for use in the design of exhaust mufflers for internal combustion engines.


2017 ◽  
Vol 103 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Zhao-Huan Wang ◽  
Chuan-Xing Bi ◽  
Xiao-Zheng Zhang ◽  
Yong-Bin Zhang

2021 ◽  
Vol 11 (3) ◽  
pp. 1074
Author(s):  
Huiyuan Sun ◽  
Thushara D. Abhayapala ◽  
Prasanga N. Samarasinghe

Spherical harmonic analysis has been a widely used approach for spatial audio processing in recent years. Among all applications that benefit from spatial processing, spatial Active Noise Control (ANC) remains unique with its requirement for open spherical microphone arrays to record the residual sound field throughout the continuous region. Ideally, a low delay spherical harmonic recording algorithm for open spherical microphone arrays is desired for real-time spatial ANC systems. Currently, frequency domain algorithms for spherical harmonic decomposition of microphone array recordings are applied in a spatial ANC system. However, a Short Time Fourier Transform is required, which introduces undesirable system delay for ANC systems. In this paper, we develop a time domain spherical harmonic decomposition algorithm for the application of spatial audio recording mainly with benefit to ANC with an open spherical microphone array. Microphone signals are processed by a series of pre-designed finite impulse response (FIR) filters to obtain a set of time domain spherical harmonic coefficients. The time domain coefficients contain the continuous spatial information of the residual sound field. We corroborate the time domain algorithm with a numerical simulation of a fourth order system, and show the proposed method to have lower delay than existing approaches.


Author(s):  
Siwei Pan ◽  
Weikang Jiang ◽  
Shang Xiang

Transient acoustic field can be rebuilt directly in the time-domain via the interpolated time-domain equivalent source method (ITDESM). However, this method requires that the reconstruction should be addressed in the free-field only, which can hardly be met in the engineering noise problems. To circumvent this difficulty, an extended ITDESM procedure is developed by extending the ITDESM from the free-field to the semi-free-field. In this approach, the time-domain equivalent sources are placed not only near the actual sound sources but also around their image sources with respect to the planar reflecting surface. The solving procedure of the equivalent source strengths is improved to decrease the computing load. The reflection conditions treated here can be arbitrary, i.e. both perfectly rigid and impedance-effected. Reconstruction results of the transient sound field radiated from three monopoles under different reflection conditions demonstrate the validity and applicability of the proposed method.


2015 ◽  
Vol 137 (6) ◽  
pp. 3544-3554 ◽  
Author(s):  
Peter H. Dahl ◽  
David R. Dall'Osto ◽  
Dara M. Farrell

1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document