Estimates of coherent reflection loss inclusive of the effects of near-surface bubbles on sound speed

2019 ◽  
Vol 145 (3) ◽  
pp. 1770-1770
Author(s):  
Adrian D. Jones ◽  
Alex Zinoviev
1994 ◽  
Vol 02 (04) ◽  
pp. 441-451 ◽  
Author(s):  
NATALIE S. GRIGORIEVA

The effect of medium motion on sound propagation in the ocean is investigated. In a moving fluid, the sound propagation is described by a system of seven linear partial differential equations for seven unknown elements of a sound wave. These are the sound pressure, the particle oscillation velocity in a sound wave as well as the changes of medium density, its entropy, and concentration of the salt caused by passage of a sound wave. In the case of stratified moving medium, the point source field is represented in the form of a sum of quasinormal waves. If the ocean perturbed by a current is weakly inhomogeneous along the horizontal direction, the modification of the well-known method of horizontal rays/vertical modes is used. The "effective" sound speed for the model of stratified ocean is introduced. It allows the qualitative estimation of the medium motion effect on sound propagation taking into account the deformation of the initial sound speed profile. A sequence of direct numerical simulations of sound propagation problems has been carried out for the Gulf Stream models. It is shown that a large-scale current may alter the nature of guided wave sound propagation. For example, a current may lead to noticeable strengthening of a near surface waveguide. It results in smoothed field pattern and significant illumination of the shadow zones. Taking account of the medium inhomogeneity along the horizontal direction leads to the shift of the shadow zones and the illuminated domains relative to the source. If a sound path crosses the Gulf Stream ring, the medium motion effect on sound propagation may be ignored.


2021 ◽  
Vol 646 ◽  
pp. A184
Author(s):  
David Korda ◽  
Michal Švanda

Context. Supergranules create a peak in the spatial spectrum of photospheric velocity features. Even though they have some properties of convection cells, their origin is still being debated in the literature. The time–distance helioseismology constitutes a method that is suitable for investigating the deep structure of supergranules. Aims. Our aim is to construct the model of the flows in the average supergranular cell using fully consistent time–distance inverse methodology. Methods. We used the Multi-Channel Subtractive Optimally Localised Averaging inversion method with regularisation of the cross-talk. We combined the difference and the mean travel-time averaging geometries. We applied this methodology to travel-time maps averaged over more than 104 individual supergranular cells. These cells were detected automatically in travel-time maps computed for 64 quiet days around the disc centre. The ensemble averaging method allows us to significantly improve the signal-to-noise ratio and to obtain a clear picture of the flows in the average supergranule. Results. We found near-surface divergent horizontal flows which quickly and monotonously weakened with depth; they became particularly weak at the depth of about 7 Mm, where they even apparently switched sign. The amplitude of the ‘reversed’ flow was comparable to the background flows. The inverted vertical flows and sound-speed perturbations were spoiled by unknown systematic errors. To learn about the vertical component, we integrated the continuity equation from the surface. The derived estimates of the vertical flow depicted a sub-surface increase from about 5 m s−1 at the surface to about 35 m s−1 at the depth of about 3 Mm followed by a monotonous decrease to greater depths. The vertical flow remained positive (an upflow) and became indistinguishable from the background at the depth of about 15 Mm. We further detected a systematic flow in the longitudinal direction. The course of this systematic flow with depth agrees well with the model of the solar rotation in the sub-surface layers.


2003 ◽  
Vol 15 (1) ◽  
pp. 63-75 ◽  
Author(s):  
ENRICO DE MARINIS ◽  
PAOLA PICCO ◽  
ROBERTO MELONI

This study looks at the feasibility of using Ocean Acoustic Tomography for long-term monitoring of polynyas using both observations in Terra Nova Bay polynya (Ross Sea) and simulations with a range dependent, multi-layered adiabatic normal mode acoustic propagation model. The summer sound speed profile is characterized by surface values of around 1450 m s−1, a minimum of 1441 m s−1 around 50 m depth and a linear increase with a 0.016 s−1 slope. Thus, the sound propagation is apparently ducted in the near surface layer and is refracted upward below it. During winter, due to water cooling and mixing processes, the subsurface minimum disappears, the surface sound speed is about 1440 m s−1 and no near surface layer ducted propagation occurs. Because of the specificity of the Terra Nova Bay seasonal sound speed profile and to cope with both deep and shelf water applicability, the feasibility study of acoustic inversion was undertaken using normal mode Match Field Tomography instead of the more classical travel-time inversion. The results from simulations demonstrate that ocean acoustic tomography is able to reproduce quite well the vertical sound speed profile, in particular the temporal evolution of summer stratification and winter mixing processes, thus providing information on the upper layer, where direct measurements are not possible.


2019 ◽  
Vol 622 ◽  
pp. A163 ◽  
Author(s):  
David Korda ◽  
Michal Švanda

Context. Time–distance helioseismology is the method of the study of the propagation of waves through the solar interior via the travel times of those waves. The travel times of wave packets contain information about the conditions in the interior integrated along the propagation path of the wave. The travel times are sensitive to perturbations of a variety of quantities. The usual task is to invert for the vector of plasma flows or the sound–speed perturbations separately. The separate inversions may be polluted by systematic bias, for instance, originating in the leakage of vector flows into the sound–speed perturbations and vice versa (called a cross-talk). Information about the cross-talk is necessary for a proper interpretation of results. Aims. We introduce an improved methodology of the time-distance helioseismology which allows us to invert for a full 3D vector of plasma flows and the sound–speed perturbations at once. Using this methodology one can also derive the mean value of the vertical component of plasma flows and the cross-talk between the plasma flows and the sound–speed perturbations. Methods. We used the Subtractive Optimally Localised Averaging method with a minimisation of the cross-talk as a tool for inverse modelling. In the forward model, we use Born approximation travel-time sensitivity kernels with the Model S as a background. The methodology was validated using forward-modelled travel times with both mean and difference point-to-annulus averaging geometries applied to a snapshot of fully self-consistent simulation of the convection. Results. We tested the methodology on synthetic data. We demonstrate that we are able to recover flows and sound–speed perturbations in the near-surface layers. We have taken the advantage of the sensitivity of our methodology to entire vertical velocity, and not only to its variations as in other available methodologies. The cross-talk from both the vertical flow component and the sound–speed perturbation has only a negligible effect for inversions for the horizontal flow components. Furthermore, this cross-talk can be minimised if needed. The inversions for the vertical component of the vector flows or for the sound–speed perturbations are affected by the cross-talk from the horizontal components, which needs to be minimised in order to provide valid results. It seems that there is a nearly constant cross-talk between the vertical component of the vector flows and the sound–speed perturbations.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document