Humans attend to signal duration but not temporal structure for sound detection: Steady-state versus pulse-train signals

2021 ◽  
Vol 149 (6) ◽  
pp. 4543-4552
Author(s):  
Beverly A. Wright ◽  
Huanping Dai
2019 ◽  
Author(s):  
Michel J. Wälti ◽  
Marc Bächinger ◽  
Kathy L. Ruddy ◽  
Nicole Wenderoth

AbstractBrain oscillations have been related to many aspects of human behavior. To understand a potential causal relationship, it is of great importance to develop methods for modulating ongoing neural activity. It has been shown that external rhythmic stimulation leads to an oscillatory brain response that follows the temporal structure of the presented stimulus and is assumed to reflect the synchronization of ongoing neural oscillations with the stimulation rhythm. This interaction between individual brain activity and so called steady-state evoked potentials (SSEPs) is the fundamental requirement of neural entrainment. Here, we investigate whether neural responses to rhythmic vibrotactile stimulation, measured with EEG, are dependent on ongoing individual brain oscillations, and therefore reflect entrained oscillatory activity. For this, we measured phase synchronization in response to rhythmic stimulation across various frequencies in the alpha and beta band. Three different stimulation intensities were applied for each frequency relative to the individual sensory threshold. We found that a higher stimulation intensity, compared to lower intensities, resulted in a more pronounced phase synchronization with the stimulation signal. Moreover, EEG responses to low stimulation frequencies closer to individual beta peak frequencies revealed a higher degree of entrainment, compared to stimulation conditions with frequencies that were more distant to endogenous oscillations. Our findings provide evidence that the efficacy of vibrotactile rhythmic beta stimulation to evoke a SSEPs is dependent on ongoing brain oscillations.


1994 ◽  
Vol 266 (5) ◽  
pp. H2007-H2017 ◽  
Author(s):  
Y. I. Zilberter ◽  
C. F. Starmer ◽  
A. O. Grant

In voltage-clamp studies of atrial myocytes exposed to disopyramide or quinidine, pulse-train stimulation revealed use-dependent block that increased with increased pulse amplitude. Use-dependent block also became negligible at hyperpolarized holding potentials (< -150 mV), consistent with either rapid unbinding at the holding potential or trapping of the drug in a drug-complexed rest conformation followed by rapid unbinding during the next channel opening event. To explore the unbinding properties of hypothetically different rest-blocked conformations, we exposed cells to a postdepolarization "conditioning" potential after channels had become fully inactivated so as to vary the transition to different hypothetical rest-blocked channels. Pulse-train stimulation from -130 to -30 mV generated only a small amount of use-dependent block. Inserting a 120-ms subthreshold (e.g., -100 mV) postdepolarization conditioning potential before return to -130 mV increased use-dependent block. The fraction of steady-state block exhibited a bell-shaped dependence on the conditioning potential. These results are consistent with the existence of a mixture of rest-blocked channel conformations, each having direct access to the blocked-inactivated state. These intermediate rest conformations display radically different drug unbinding rates.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 386-391
Author(s):  
R. J. Trepanier ◽  
M. A. Whitehead

The dependence of the NQR line width on the RF pulse intensity and period using a continuous steady state pulse train for polycrystalline 14N compounds shows a dependence on the asymmetry parameter η, the temperature, and the crystal structure.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


Sign in / Sign up

Export Citation Format

Share Document