rhythmic stimulation
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 18 (6) ◽  
pp. 066042
Author(s):  
Bingchuan Liu ◽  
Xinyi Yan ◽  
Xiaogang Chen ◽  
Yijun Wang ◽  
Xiaorong Gao

Abstract Objective. There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation. Approach. Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS. Main results. Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min. Significance. Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.


Children ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 660
Author(s):  
Joëlle Provasi ◽  
Loreline Blanc ◽  
Isabelle Carchon

The fetal environment provides the fetus with multiple potential sources of rhythmic stimulation that are not present in the NICU. Maternal breathing, heartbeats, walking, dancing, running, speaking, singing, etc., all bathe the fetus in an environment of varied rhythmic stimuli: vestibular, somatosensory, tactile, and auditory. In contrast, the NICU environment does not offer the same proportion of rhythmic stimulation. After analyzing the lack of rhythmic stimulation in the NICU, this review highlights the different proposals for vestibular and/or auditory rhythmic stimulation offered to preterm infants alone and with their parents. The focus is on the beneficial effects of auditory and vestibular stimulation involving both partners of the mother–infant dyad. A preliminary study on the influence of a skin-to-skin lullaby on the stability of maternal behavior and on the tonic emotional manifestations of the preterm infant is presented as an example. The review concludes with the importance of introducing rhythmic stimulations in the NICU.


2021 ◽  
pp. JN-RM-0213-21
Author(s):  
Jacques Pesnot Lerousseau ◽  
Agnès Trébuchon ◽  
Benjamin Morillon ◽  
Daniele Schön

2021 ◽  
Vol 2 ◽  
Author(s):  
Katharina Lingelbach ◽  
Alexander M. Dreyer ◽  
Isabel Schöllhorn ◽  
Michael Bui ◽  
Michael Weng ◽  
...  

Objective and Background: Decades of research in the field of steady-state visual evoked potentials (SSVEPs) have revealed great potential of rhythmic light stimulation for brain–computer interfaces. Additionally, rhythmic light stimulation provides a non-invasive method for entrainment of oscillatory activity in the brain. Especially effective protocols enabling non-perceptible rhythmic stimulation and, thereby, reducing eye fatigue and user discomfort are favorable. Here, we investigate effects of (1) perceptible and (2) non-perceptible rhythmic light stimulation as well as attention-based effects of the stimulation by asking participants to focus (a) on the stimulation source directly in an overt attention condition or (b) on a cross-hair below the stimulation source in a covert attention condition.Method: SSVEPs at 10 Hz were evoked with a light-emitting diode (LED) driven by frequency-modulated signals and amplitudes of the current intensity either below or above a previously estimated individual threshold. Furthermore, we explored the effect of attention by asking participants to fixate on the LED directly in the overt attention condition and indirectly attend it in the covert attention condition. By measuring electroencephalography, we analyzed differences between conditions regarding the detection of reliable SSVEPs via the signal-to-noise ratio (SNR) and functional connectivity in occipito-frontal(-central) regions.Results: We could observe SSVEPs at 10 Hz for the perceptible and non-perceptible rhythmic light stimulation not only in the overt but also in the covert attention condition. The SNR and SSVEP amplitudes did not differ between the conditions and SNR values were in all except one participant above significance thresholds suggested by previous literature indicating reliable SSVEP responses. No difference between the conditions could be observed in the functional connectivity in occipito-frontal(-central) regions.Conclusion: The finding of robust SSVEPs even for non-intrusive rhythmic stimulation protocols below an individual perceptibility threshold and without direct fixation on the stimulation source reveals strong potential as a safe stimulation method for oscillatory entrainment in naturalistic applications.


2021 ◽  
pp. 107863
Author(s):  
Qiaoyu Chen ◽  
Danying Wang ◽  
Kimron L. Shapiro ◽  
Simon Hanslmayr

2019 ◽  
Author(s):  
Michel J. Wälti ◽  
Marc Bächinger ◽  
Kathy L. Ruddy ◽  
Nicole Wenderoth

AbstractBrain oscillations have been related to many aspects of human behavior. To understand a potential causal relationship, it is of great importance to develop methods for modulating ongoing neural activity. It has been shown that external rhythmic stimulation leads to an oscillatory brain response that follows the temporal structure of the presented stimulus and is assumed to reflect the synchronization of ongoing neural oscillations with the stimulation rhythm. This interaction between individual brain activity and so called steady-state evoked potentials (SSEPs) is the fundamental requirement of neural entrainment. Here, we investigate whether neural responses to rhythmic vibrotactile stimulation, measured with EEG, are dependent on ongoing individual brain oscillations, and therefore reflect entrained oscillatory activity. For this, we measured phase synchronization in response to rhythmic stimulation across various frequencies in the alpha and beta band. Three different stimulation intensities were applied for each frequency relative to the individual sensory threshold. We found that a higher stimulation intensity, compared to lower intensities, resulted in a more pronounced phase synchronization with the stimulation signal. Moreover, EEG responses to low stimulation frequencies closer to individual beta peak frequencies revealed a higher degree of entrainment, compared to stimulation conditions with frequencies that were more distant to endogenous oscillations. Our findings provide evidence that the efficacy of vibrotactile rhythmic beta stimulation to evoke a SSEPs is dependent on ongoing brain oscillations.


2019 ◽  
Vol 6 ◽  
Author(s):  
Robin Miao Sin Yap ◽  
Ken-ichiro Ogawa ◽  
Yuki Hirobe ◽  
Terumasa Nagashima ◽  
Masatoshi Seki ◽  
...  

2019 ◽  
Vol 29 (3) ◽  
pp. 392-401.e4 ◽  
Author(s):  
Konstantinos Kompotis ◽  
Jeffrey Hubbard ◽  
Yann Emmenegger ◽  
Aurore Perrault ◽  
Michel Mühlethaler ◽  
...  

2018 ◽  
Vol 21 (5) ◽  
pp. 356-363
Author(s):  
Ekaterina M. Klochihina ◽  
Aleksey K. Erdyakov ◽  
Maria P. Morozova ◽  
Svetlana A. Gavrilova ◽  
Elena S. Akhapkina ◽  
...  

Objectives: Diabetic retinopathy remains the major cause of blindness among the working-age population of developed countries. Considering this, experimental models of diabetes involving laboratory animals are important for assessing clinically significant methods to determine early pathologic alterations of the retina. The early detection of diabetic retinopathy in combination with a search for new pathogenetic targets will enable focusing on new strategies to limit the development of critical changes in the retina and to prolong retinal functioning during the development of diabetes mellitus. Aim: This study aimed to define parameters of electroretinography test that identifies changes due to retinal impairment in diabetes. Methods: Experimental diabetes was induced in Wistar rats by intraperitoneally injecting streptozocin (65 mg/kg; group DM). The control group (CB) received intraperitoneal injections of the vehicle, i.e. citric buffer. On each consecutive day of the experiment, all rats received insulin detemir (2 u/kg). Ophthalmoscopy and electroretinography were conducted before initiating the experiment and after 50, 58 and 66 days of injectin sptreptozocin. Results: Amid 2u\kg insulin injection the glucose level in venous blood in DM group amounted to 30-40 mM. The ophthalmoscopy showed that the optic nerve disk paled by the 50th day, with its line erasing. During electroretinography, wave amplitude in oscillatory potential test tended to decrease. -wave latency of photopic system increased with -wave latency of photopic system and - and -waves latency of scotopic system not altering. In addition, the amplitude of rhythmic stimulation of 8 and 12 Hz decreased. Conclusion: The most apparent parameters of electroretinography for modelling streptozocin-induced diabetes are wave amplitude during the oscillatory potential test, photopic B-wave latency and the amplitude of rhythmic stimulation. These results suggest that in diabetes, ischaemic injury is an important cause of early dysfunction of inner retinal layers.


Sign in / Sign up

Export Citation Format

Share Document