Postural Control Strategies are Dependent on Reach Direction in the Star Excursion Balance Test

2016 ◽  
Vol 21 (6) ◽  
pp. 33-39 ◽  
Author(s):  
Tyler R. Keith ◽  
Tara A. Condon ◽  
Ayana Phillips ◽  
Patrick O. McKeon ◽  
Deborah L. King

The Star Excursion Balance Test (SEBT) is a valid and reliable measure of dynamic postural control. Center of pressure (COP) behavior during the SEBT could provide additional information about direction-dependent SEBT balance strategies. The purpose of this study was to quantify spatiotemporal COP differences using COP area and velocity among three different SEBT reach directions (anterior, posteromedial, posterolateral). The anterior direction COP velocity was significantly lower than both posterior directions. However, the anterior COP area was significantly greater than posterior. Based on COP behavior, the anterior and posterior reach directions appear to use different postural control strategies on the SEBT.

2012 ◽  
Vol 47 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Garrett F. Coughlan ◽  
Karl Fullam ◽  
Eamonn Delahunt ◽  
Conor Gissane ◽  
Brian M. Caulfield ◽  
...  

Context: The Star Excursion Balance Test (SEBT) is a widely accepted method of assessing dynamic postural stability. The Y Balance Test (YBT) is a commercially available device for measuring balance that uses 3 (anterior, posteromedial, and posterolateral) of the 8 SEBT directions and has been advocated as a method for assessing dynamic balance. To date, no studies have compared reach performance in these tests in a healthy population. Objective: To determine whether any differences exist between reach distance performance for the anterior, posteromedial, and posterolateral directions of the SEBT and the YBT. Design: Descriptive laboratory study. Setting: University motion analysis laboratory. Patients or Other Participants: A total of 20 healthy active male participants (age = 22.50 ± 3.05 years, height = 1.78 ± 0.82 m, weight = 79.48 ± 11.32 kg, body mass index = 24.96 ± 2.56 kg/m2). Intervention(s): Participants carried out 3 trials in each reach direction on each leg on the SEBT and the YBT a minimum of 1 week apart. Main Outcome Measure(s): The means of the 3 trials in each direction on each leg on both tests were calculated. Data were collected after 4 practice trials in each direction. Paired t tests and Bland-Altman plots were used to compare reach distances between the SEBT and the YBT. Results: Participants reached farther in the anterior direction on the SEBT than on the YBT. No differences were observed in the posteromedial and posterolateral directions. Conclusions: Differing postural-control strategies may be used to complete these tasks. This finding has implications for the implementation and interpretation of these dynamic balance tests.


2012 ◽  
Vol 47 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Hayley Ericksen ◽  
Phillip A. Gribble

Context: Hormonal fluctuation as a risk factor in anterior cruciate ligament injury has been investigated with conflicting results. However, the influence of hormone fluctuations on ankle laxity and function has not been thoroughly examined. Objective: To examine the potential hormone contributions to ankle laxity and dynamic postural control during the preovulatory and postovulatory phases of the menstrual cycle using an ankle arthrometer and the Star Excursion Balance Test in healthy women. The cohort group consisted of male control participants. Design: Cohort study. Setting: Research laboratory. Patients or Other Participants: Twenty healthy women (age = 23.8 ± 6.50 years, height = 163.88 ± 8.28 cm, mass = 63.08 ± 12.38 kg) and 20 healthy men (age = 23.90 ± 4.15 years, height = 177.07 ± 7.60 cm, mass = 80.57 ± 12.20 kg). Intervention(s): Ankle stability was assessed with anterior-posterior and inversion-eversion loading. Dynamic postural control was assessed with the posteromedial reaching distance of the Star Excursion Balance Test. Main Outcome Measure(s): Female participants used ovulation kits for 3 months to determine the time of ovulation; during their preovulatory and postovulatory phases, they were tested in the laboratory with an ankle arthrometer and the Star Excursion Balance Test. Male participants were tested on similar dates as controls. For each dependent variable, a time by side by sex repeated-measures analysis of variance was performed. Statistical significance was set a priori at P < .05. Results: For anterior-posterior laxity, a side main effect was noted (F1,38 = 10.93, P = .002). For inversion-eversion laxity, a sex main effect was seen (F1,38 = 10.75, P = .002). For the posteromedial reaching task, a sex main effect was demonstrated (F1,38 = 8.72, P = .005). No influences of time on the dependent variables were evident. Conclusions: Although women presented with more ankle inversion-eversion laxity and less dynamic postural control, hormonal fluctuations during the menstrual cycle (preovulatory compared with postovulatory) did not affect ankle laxity or dynamic postural control, 2 factors that are associated with ankle instability.


Author(s):  
Sergio Sebastia-Amat ◽  
Luca Paolo Ardigò ◽  
Jose Manuel Jimenez-Olmedo ◽  
Basilio Pueo ◽  
Alfonso Penichet-Tomas

The aim of this work was to evaluate the effectiveness of a 12-week-long balance training program on the postural control of elite male beach volleyball players and the effect on balance when swapping to specific sports training in the sand in the following 12 weeks. Six elite players were tested before and after the balance training program and also 12 weeks after the balance training had finished. To this aim, a pressure platform was used to collect the following center of pressure parameters: path length, speed, mean position, and root-mean-square amplitude in the medial-lateral and anteroposterior planes. Romberg quotients for the center of pressure parameters were also calculated. The results of the present study showed better static postural control after specific balance training: smaller path length and speed under open eyes condition in dominant (p = 0.015; p = 0.009, respectively) and non-dominant monopedal stances (p = 0.005; p = 0.004, respectively). Contrastingly, 12 weeks after the balance training program, the path length and speed values under open eyes condition in bipedal stance increased significantly (p = 0.045; p = 0.004, respectively) for sand training. According to our results, balance training is effective to achieve positive balance test scores. It is speculated, and yet to be proven, that sand training could be effective to improve dynamic and open eyes postural control during beach volleyball practice. In beach volleyball players, a balance training program is effective to develop static balance but the effect of ecological sand training on dynamic performance deserves specific investigation.


2004 ◽  
Vol 13 (1) ◽  
pp. 54-66 ◽  
Author(s):  
Lauren C. Olmsted ◽  
Jay Hertel

Context:The effects of custom-molded foot orthotics on neuromuscular processes are not clearly understood.Objective:To examine these effects on postural control in subjects with different foot types.Design:Between-groups, repeated-measures design.Setting:Athletic training laboratory.Subjects:30 healthy subjects assigned to groups by foot type: planus (n = 11), rectus (n = 12), or cavus (n = 7).Interventions:Custom-fit semirigid orthotics.Main Outcome Measures:Static postural control was measured on a force plate. Dynamic postural control was measured using the Star Excursion Balance Test. Both measurements were assessed with and without orthotics at baseline and 2 weeks later.Results:For static postural control, a significant condition-by-group interaction was found. Subjects with cavus feet had a decreased center-of-pressure velocity while wearing orthotics. For dynamic postural control, a significant condition-by-direction-by-group interaction was found. Subjects with cavus feet had increased reach distances in 3 of 8 directions while wearing orthotics.Conclusions:Custom orthotics were associated with some improvements in static and dynamic postural control in subjects with cavus feet.


Author(s):  
Brice Picot ◽  
Romain Terrier ◽  
Nicolas Forestier ◽  
François Fourchet ◽  
Patrick O. McKeon

The Star Excursion Balance Test (SEBT) is a reliable, responsive, and clinically relevant functional assessment of lower limbs’ dynamic postural control. However, great disparity exists regarding its methodology and the reported outcomes. Large and specific databases from various population (sport, age, and gender) are needed to help clinicians when interpreting SEBT performances in daily practice. Several contributors to SEBT performances in each direction were recently highlighted. The purpose of this clinical commentary is to (a) provide an updated review of the design, implementation, and interpretation of the SEBT and (b) propose guidelines to standardize SEBT procedures for better comparisons across studies.


Sign in / Sign up

Export Citation Format

Share Document