scholarly journals The Effect of Balance and Sand Training on Postural Control in Elite Beach Volleyball Players

Author(s):  
Sergio Sebastia-Amat ◽  
Luca Paolo Ardigò ◽  
Jose Manuel Jimenez-Olmedo ◽  
Basilio Pueo ◽  
Alfonso Penichet-Tomas

The aim of this work was to evaluate the effectiveness of a 12-week-long balance training program on the postural control of elite male beach volleyball players and the effect on balance when swapping to specific sports training in the sand in the following 12 weeks. Six elite players were tested before and after the balance training program and also 12 weeks after the balance training had finished. To this aim, a pressure platform was used to collect the following center of pressure parameters: path length, speed, mean position, and root-mean-square amplitude in the medial-lateral and anteroposterior planes. Romberg quotients for the center of pressure parameters were also calculated. The results of the present study showed better static postural control after specific balance training: smaller path length and speed under open eyes condition in dominant (p = 0.015; p = 0.009, respectively) and non-dominant monopedal stances (p = 0.005; p = 0.004, respectively). Contrastingly, 12 weeks after the balance training program, the path length and speed values under open eyes condition in bipedal stance increased significantly (p = 0.045; p = 0.004, respectively) for sand training. According to our results, balance training is effective to achieve positive balance test scores. It is speculated, and yet to be proven, that sand training could be effective to improve dynamic and open eyes postural control during beach volleyball practice. In beach volleyball players, a balance training program is effective to develop static balance but the effect of ecological sand training on dynamic performance deserves specific investigation.

2020 ◽  
Author(s):  
Zahra Rahmati ◽  
Saeed Behzadipour ◽  
Alfred C. Schouten ◽  
Ghorban Taghizadeh ◽  
Keikhosrow Firoozbakhsh

Abstract Background: Balance training improves postural control in Parkinson’s disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program are poorly understood. Objectives: We investigated the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. Methods: Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training. Center-of-pressure (COP) was recorded at four time-points during the training (pre-, week 2, week 4, and post-training). COP was used to calculate the sway measures and to identify the parameters of a patient-specific postural control model, at each time-point. The posturographic and model-based measures constituted the two sets of stability- and flexibility-related measures. Results: Mobility- and flexibility-related measures showed a continuous improvement during the balance-training program. In particular, mobility improved at mid-training and continued to improve to the end of the training, whereas flexibility-related measures reached significance only at the end. The progression in the balance- and stability-related measures was characterized by early improvements over the first three to four weeks of training, and reached a plateau for the rest of the training. Conclusions: The progression in balance and postural stability is achieved earlier and susceptible to plateau out, while mobility and flexibility continues to improve during the balance training.


2020 ◽  
Author(s):  
Zahra Rahmati ◽  
Saeed Behzadipour ◽  
Alfred C. Schouten ◽  
Ghorban Taghizadeh ◽  
Keikhosrow Firoozbakhsh

Abstract Background: Balance training improves postural control in Parkinson’s disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program are poorly understood.Methods: We explored the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and model-based measures. Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training. Center-of-pressure (COP) was recorded at four time-points during the training (pre-, week 2, week 4, and post-training). COP was used to calculate the sway measures and to identify the parameters of a patient-specific postural control model, at each time-point (stability and flexibility degree). The posturographic and model-based measures constituted the two sets of stability- and flexibility-related measures.Results: Mobility- and flexibility-related measures showed a continuous improvement during the balance-training program. In particular, mobility improved at mid-training and continued to improve to the end of the training, whereas flexibility-related measures reached significance only at the end. The progression in the balance- and stability-related measures was characterized by early improvements over the first three to four weeks of training, and reached a plateau for the rest of the training. Conclusions: The progression in balance and postural stability is achieved earlier and susceptible to plateau out, while mobility and flexibility continues to improve during balance training.


2016 ◽  
Vol 51 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Mutlu Cuğ ◽  
Ashley Duncan ◽  
Erik Wikstrom

 Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles.Context:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals.Objective:  Randomized controlled trial.Design:  Research laboratory.Setting:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7).Patients or Other Participants:  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes.Intervention(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention.Main Outcome Measure(s):  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures.Results:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.Conclusions:


2021 ◽  
Vol 30 (2) ◽  
pp. 175-182
Author(s):  
Yun-A Shin ◽  
Sang-Min Hong ◽  
Jong-Sun Lee ◽  
Hyo-Been Jeong

PURPOSE:This study aimed to examine the effects of resistance and balance training on physical function and postural control in individuals with Down syndrome (DS).METHODS:Ten adults with DS constituted the experimental group (EX) and attended an 8-week resistance and balance training program. The results were compared with those of the control group (CON), which consisted of 10 patients who did not undergo any physical training. Body composition, postural stability, and physical fitness were measured before and after the training program. Resistance and balance training were performed for 60 minutes, three times a week for 8 weeks.RESULTS: Body weight, body mass index, body fat percentage, and waist circumference decreased significantly in the EX group after completing the 8-week resistance and balance training program. The center of pressure and the difference between standing foot pressure on the left and right were significantly improved in the EX group. Physical fitness including sit-to-stand repetitions and 10 m shuttle duration significantly improved in the EX and CON groups.CONCLUSIONS:These results suggest that resistance and balance training to improve musculoskeletal problems is an effective strategy to prevent injury, fatigue, and falls during exercise and to improve general health in individuals with DS.


2020 ◽  
Author(s):  
Zahra Rahmati ◽  
Saeed Behzadipour ◽  
Alfred C. Schouten ◽  
Ghorban Taghizadeh ◽  
Keikhosrow Firoozbakhsh

Abstract Background: Balance training improves postural control in Parkinson’s disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program are poorly understood. Methods: We explored the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training. Center-of-pressure (COP) was recorded at four time-points during the training (pre-, week 2, week 4, and post-training). COP was used to calculate the sway measures and to identify the parameters of a patient-specific postural control model, at each time-point (stability and flexibility degree). The posturographic and model-based measures constituted the two sets of stability- and flexibility-related measures. Results: Mobility- and flexibility-related measures showed a continuous improvement during the balance-training program. In particular, mobility improved at mid-training and continued to improve to the end of the training, whereas flexibility-related measures reached significance only at the end. The progression in the balance- and stability-related measures was characterized by early improvements over the first three to four weeks of training, and reached a plateau (did not change) for the rest of the training. Conclusions: The progression in balance and postural stability is achieved earlier and susceptible to plateau out, while mobility and flexibility continues to improve during balance training.


2019 ◽  
Vol 67 (1) ◽  
pp. 235-245
Author(s):  
Javier Fernández-Rio ◽  
Luis Santos ◽  
Benjamín Fernández-García ◽  
Roberto Robles ◽  
Iván Casquero ◽  
...  

AbstractThe goal of this study was to assess the effects of a supervised slackline training program in a group of soccer players. Thirty-four male division I under-19 players (16.64 ± 0.81 years) agreed to participate in the study. They were randomly divided into an experimental group (EG) and a control group (CG). The first group (EG) followed a 6-week supervised slackline training program (3 sessions/week; 5-9 min/session), while the CG performed only regular soccer training. Several variables were assessed in all participants: acceleration (20-m sprint test), agility (90º turns test), jump performance (squat jump, countermovement jump), and postural control (Center of Pressure ( CoP) testing: length, area, speed, Xmean, Ymean, Xspeed, Yspeed, Xdeviation, Ydeviation). Ratings of perceived exertion and local muscle ratings of perceived exertions were also recorded after each slackline training session. At post-tests, there was a significant increase only in the EG in acceleration, agility, squat jump and countermovement jump performance, as well as several CoP variables: area in the bipedal support on a firm surface, and length, area and speed in the left leg on a firm surface. The program was rated as “somewhat hard” by the players, while quadriceps, gastrocnemius and tibialis anterior were the most exerted muscles while slacklining. In conclusion, slackline training can be an effective training tool for young, high-level soccer players.


2016 ◽  
Vol 21 (6) ◽  
pp. 33-39 ◽  
Author(s):  
Tyler R. Keith ◽  
Tara A. Condon ◽  
Ayana Phillips ◽  
Patrick O. McKeon ◽  
Deborah L. King

The Star Excursion Balance Test (SEBT) is a valid and reliable measure of dynamic postural control. Center of pressure (COP) behavior during the SEBT could provide additional information about direction-dependent SEBT balance strategies. The purpose of this study was to quantify spatiotemporal COP differences using COP area and velocity among three different SEBT reach directions (anterior, posteromedial, posterolateral). The anterior direction COP velocity was significantly lower than both posterior directions. However, the anterior COP area was significantly greater than posterior. Based on COP behavior, the anterior and posterior reach directions appear to use different postural control strategies on the SEBT.


2004 ◽  
Vol 13 (1) ◽  
pp. 54-66 ◽  
Author(s):  
Lauren C. Olmsted ◽  
Jay Hertel

Context:The effects of custom-molded foot orthotics on neuromuscular processes are not clearly understood.Objective:To examine these effects on postural control in subjects with different foot types.Design:Between-groups, repeated-measures design.Setting:Athletic training laboratory.Subjects:30 healthy subjects assigned to groups by foot type: planus (n = 11), rectus (n = 12), or cavus (n = 7).Interventions:Custom-fit semirigid orthotics.Main Outcome Measures:Static postural control was measured on a force plate. Dynamic postural control was measured using the Star Excursion Balance Test. Both measurements were assessed with and without orthotics at baseline and 2 weeks later.Results:For static postural control, a significant condition-by-group interaction was found. Subjects with cavus feet had a decreased center-of-pressure velocity while wearing orthotics. For dynamic postural control, a significant condition-by-direction-by-group interaction was found. Subjects with cavus feet had increased reach distances in 3 of 8 directions while wearing orthotics.Conclusions:Custom orthotics were associated with some improvements in static and dynamic postural control in subjects with cavus feet.


2021 ◽  
Vol 17 (6) ◽  
pp. 418-427
Author(s):  
Yücel Makaracı ◽  
Recep Soslu ◽  
Ömer Özer ◽  
Abdullah Uysal

In sports such as basketball and volleyball, loss of balance due to the inability to maintain body stability and lack of postural control adversely affect athletic performance. Deaf athletes appear to struggle with balance and postural stability problems. The purpose of this study was to examine postural sway values in parallel and single leg stance of Olympic deaf basketball and volleyball players and reveal differences between the branches. Twenty-three male athletes from the Turkish national deaf basketball (n= 11) and volleyball (n= 12) teams participated in the study. After anthropometric measurements, the subjects completed postural sway (PS) tests in parallel/single leg stances with open eyes and closed eyes on a force plate. PS parameters (sway path, velocity, and area) obtained from the device software were used for the statistical analysis. The Mann-Whitney U-test was used to compare differences in PS parameters between basketball and volleyball players, and the alpha value was accepted as 0.05. Volleyball players had significantly better results in parallel stance and dominant leg PS values than basketball players (P<0.05). There was no significant difference between the groups in nondominant leg PS values (P>0.05). We think that proprioceptive and vestibular system enhancing training practices to be performed with stability exercises will be beneficial in terms of both promoting functional stability and interlimb coordination. Trainers and strength coaches should be aware of differences in the postural control mechanism of deaf athletes.


Sign in / Sign up

Export Citation Format

Share Document