Quantification of Achilles Tendon Force Enhancement by Passively Induced Dorsiflexion Stretches

1999 ◽  
Vol 15 (3) ◽  
pp. 221-232 ◽  
Author(s):  
Caroline Nicol ◽  
Paavo V. Komi

Magnitude of the reflex contribution to force enhancement was investigated in vivo during passive stretches of the Achilles tendon (AT) of one female subject. Thirty passive (5 × 6) dorsiflexions were induced by a motorized ankle ergometer. Achilles tendon force (ATF) was sensed by a buckle transducer applied surgically around the right AT. Single passive stretches resulted in a low but rather linear ATF increase in the absence of EMG (surface electrodes) activity. In the presence of reflexes, a clear ATF enhancement occurred 13–15 ms after the beginning of the EMG reflex responses. In double dorsiflexions at either 1.2 or 1.9 rad · s-1, which were separated by a maintained stretched position of either 40 or 90 ms, the first stretch resulted in initial linear ATF increase, followed by an additional force enhancement during the plateau phase. This reflexly induced increase represented 94 ± 4 N and 184 ± 1 N, respectively, for the 40 and the 90 ms plateaus, corresponding to 210 ± 85% and 486 ± 177% enhancements as compared to the first passive stretch effect. The results suggest further that timing of the stretch during the twitch response influences the magnitude and rate of force potentiation.

2012 ◽  
Vol 28 (5) ◽  
pp. 511-519 ◽  
Author(s):  
Dominic James Farris ◽  
Erica Buckeridge ◽  
Grant Trewartha ◽  
Miranda Polly McGuigan

This study assessed the effects of orthotic heel lifts on Achilles tendon (AT) force and strain during running. Ten females ran barefoot over a force plate in three conditions: no heel lifts (NHL), with 12 mm heel lifts (12HL) and with 18 mm heel lifts (18HL). Kinematics for the right lower limb were collected (200 Hz). AT force was calculated from inverse dynamics. AT strain was determined from kinematics and ultrasound images of medial gastrocnemius (50 Hz). Peak AT strain was less for 18HL (5.5 ± 4.4%) than for NHL (7.4 ± 4.2%) (p = .029, effect size [ES] = 0.44) but not for 12HL (5.8 ± 4.8%) versus NHL (ES = 0.35). Peak AT force was significantly (p = .024, ES = 0.42) less for 18HL (2382 ± 717 N) than for NHL (2710 ± 830 N) but not for 12HL (2538 ± 823 N, ES = 0.21). The 18HL reduced ankle dorsiflexion but not flexion-extension ankle moments and increased the AT moment arm compared with NHL. Thus, 18HL reduced force and strain on the AT during running via a reduction in dorsiflexion, which lengthened the AT moment arm. Therefore, heel lifts could be used to reduce AT loading and strain during the rehabilitation of AT injuries.


2016 ◽  
Vol 49 (14) ◽  
pp. 3200-3207 ◽  
Author(s):  
Taylor J.M. Dick ◽  
Allison S. Arnold ◽  
James M. Wakeling

1998 ◽  
Vol 13 (7) ◽  
pp. 532-541 ◽  
Author(s):  
A.N. Arndt ◽  
P.V. Komi ◽  
G.-P. Brüggemann ◽  
J. Lukkariniemi

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruoli Wang ◽  
Shiyang Yan ◽  
Marius Schlippe ◽  
Olga Tarassova ◽  
Gaia Valentina Pennati ◽  
...  

The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: − 10.96 ° ± 3.48 ° ; SOL: − 8.50 ° ± 4.03 ° ), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42  mm; SOL: 31.39 ± 6.42  mm), and stiffness (GM: 23.18 ± 13.46  Nmm-1; SOL: 31.57 ± 13.26  Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50  MPa; SOL: 4.90 ± 1.88  MPa, p = 0.024 ), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50  N; SOL: 174.59 ± 79.54  N, p = 0.020 ). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.


2021 ◽  
Vol 22 (2) ◽  
pp. 824
Author(s):  
Sabino Padilla ◽  
Mikel Sánchez ◽  
Victor Vaquerizo ◽  
Gerard A. Malanga ◽  
Nicolás Fiz ◽  
...  

Achilles tendon ruptures are very common tendon ruptures and their incidence is increasing in modern society, resulting in work incapacity and months off sport, which generate a need for accelerated and successful therapeutic repair strategy. Platelet-rich plasma (PRP) is emerging as adjuvant human blood-derived constructs to assist Achilles tendon rupture treatment. However, myriad PRP preparation methods in conjunction with poor standardization in the modalities of their applications impinge on the consistent effectiveness of clinical and structural outcomes regarding their therapeutic efficacy. The purpose of this review is to provide some light on the application of PRP for Achilles tendon ruptures. PRP has many characteristics that make it an attractive treatment. Elements such as the inclusion of leukocytes and erythrocytes within PRP, the absence of activation and activation ex vivo or in vivo, the modality of application, and the adjustment of PRP pH can influence the biology of the applied product and result in misleading therapeutic conclusions. The weakest points in demonstrating their consistent effectiveness are primarily the result of myriad PRP preparation methods and the poor standardization of modalities for their application. Selecting the right biological scaffold and applying it correctly to restitutio ad integrum of ruptured Achilles tendons remains a daunting and complex task.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


Author(s):  
Chia‐Han Yeh ◽  
James Calder ◽  
Jarrod Antflick ◽  
Anthony M.J. Bull ◽  
Angela E. Kedgley

2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


Sign in / Sign up

Export Citation Format

Share Document