An Investigation of the Relationship between Hip Extension Torque, Hip Extension Velocity, and Muscle Activation

1999 ◽  
Vol 15 (3) ◽  
pp. 253-269
Author(s):  
David Hawkins ◽  
Mark Smeulders

The purpose of this study was to determine if the characteristic Hill model, used to describe me force–velocity relationship for isolated tetanically stimulated muscle, could be modified and used to describe me torque–velocity behavior of me hip for maximally and submaximally stimulated hip extensor muscles. Fourteen subjects performed hip extension movements at effort levels of 100%, 70%, and 40% of a maximum isometric effort. A solenoid provided isometric resistance to hip extension. Once the desired effort level was achieved, as indicated by me isometric force, the solenoid released and me hip moved against an opposing elastic resistance equal to 75%, 50%, 25%, and 0% of the specified effort level. An electrogoniometer quantified hip angle. Hip velocity was determined by numerically differentiating the angle data. Torque-velocity-activation (or effort level) data were determined for each trial. Model parameters were determined to give me best fit to the data for each subject. Average parameter values were determined for each gender and for the entire group. The modified Hill-type model, Tm = (Tmax · A − K1 · ω)/(K2 · ω + 1), accurately describes me relationship between joint torque (Tm), maximum isometric joint torque (Tmax), joint velocity (ω), and muscle activation level (A) for subject-specific parameters (K1 and K2), but not for parameters averaged across genders or the entire group. Values for Tmax, K1, and K2 ranged from 90 to 385 Nm, 6.1 to 47.9 Nms, and 0.030 to 0.716 s, respectively.

1998 ◽  
Vol 14 (2) ◽  
pp. 141-157 ◽  
Author(s):  
David Hawkins ◽  
Mark Smeulders

The purpose of this study was to determine if the Hill model, used to describe the force-velocity relationship for isolated tetanically stimulated muscle, could be modified and used to describe the torque-velocity behavior of the knee for maximally and submaximally stimulated quadriceps and hamstrings muscles. Fourteen subjects performed both knee flexion and extension movements at 100%, 70%, and 40% of maximum isometric effort. For each effort level, the knee was allowed to move against resistances equal to 75%, 50%, 25%, and 0% of the specified effort level. An electrogoniometer quantified knee angle. Knee velocity was determined by numerically differentiating the joint angle data. Torque-velocity-activation (or effort level) data were determined for each trial. Model parameters were determined to give the best fit to the data for each subject. Average parameter values were determined for each gender and for the entire group. The modified Hill-type model accurately described the relationship between torque, velocity, and muscle activation level for subject-specific parameters but not for parameters averaged across genders or the entire group.


Author(s):  
Moemen Hussein ◽  
Said Shebl ◽  
Rehab Elnemr ◽  
Hesham Elkaranshawy

Abstract Hill-type models are frequently used in biomechanical simulations. They are attractive for their low computational cost and close relation to commonly measured musculotendon parameters. Still, more attention is needed to improve the activation dynamics of the model specifically because of the nonlinearity observed in the EMG-Force relation. Moreover, one of the important and practical questions regarding the assessment of the model's performance is how adequately can the model simulate any fundamental type of human movement without modifying model parameters for different tasks? This paper tries to answer this question by proposing a simple physiologically based activation dynamics model. The model describes the ?kinetics of the calcium dynamics while activating and deactivating the muscle contraction process. Hence, it allowed simulating the recently discovered role of store-operated calcium entry (SOCE) channels as immediate counter-flux to calcium loss across the tubular system during excitation-contraction coupling. By comparing the ability to fit experimental data without readjusting the parameters, the proposed model has proven to have more steady performance than phenomenologically based models through different submaximal isometric contraction levels. This model indicates that more physiological insights is key for improving Hill-type model performance.


2005 ◽  
Vol 93 (5) ◽  
pp. 2614-2624 ◽  
Author(s):  
Daichi Nozaki ◽  
Kimitaka Nakazawa ◽  
Masami Akai

We investigated how the CNS selects a unique muscle activation pattern under a redundant situation resulting from the existence of bi-articular muscles. Surface electromyographic (EMG) activity was recorded from eight lower limb muscles while 11 subjects were exerting isometric knee and hip joint torque simultaneously ( Tk and Th, respectively. Extension torque was defined as positive). The knee joint was kept at either 90 or 60°. Various combinations of torque were imposed on both joints by pulling a cable attached to an ankle brace with approximately three levels of isometric force in 16 directions. The distribution of the data in the three-dimensional plot (muscle activation level quantified by the root mean squared value of EMG vs. Tk and Th) demonstrates that the muscle activation level M can be approximated by a single model as M = ⌊ aTk + bTh⌋ where ⌊ x⌋ = max ( x,0) and a and b are constants. The percentage of variance explained by this model averaged over all muscles was 82.3 ± 14.0% (mean ± SD), indicating that the degree of fit of the data to the plane was high. This model suggests that the CNS uses a cosine tuning function on the torque plane ( Tk, Th) to recruit muscles. Interestingly, the muscle's preferred direction (PD) defined as the direction where it is maximally active on the torque plane deviated from its own mechanical pulling direction (MD). This deviation was apparent in the mono-articular knee extensor (MD = 0°, whereas PD = 14.1 ± 3.7° for vastus lateralis) and in the mono-articular hip extensor (MD = 90°, whereas PD = 53.4 ± 6.4° for gluteus maximus). Such misalignment between MD and PD indicates that the mono-articular muscle's activation level depends on the torque of the joint that it does not span. Practical implications of this observation for the motor control studies were discussed. We also demonstrated that the observed shift from the MD to the PD is plausible in the configuration of our musculo-skeletal system and that the experimental results are likely to be explained by the CNS process to minimize the variability of the endpoint force vector under the existence of signal-dependent noise.


Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


2017 ◽  
Vol 37 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Haluk Ay ◽  
Anthony Luscher ◽  
Carolyn Sommerich

Purpose The purpose of this study is to design and develop a testing device to simulate interaction between human hand–arm dynamics, right-angle (RA) computer-controlled power torque tools and joint-tightening task-related variables. Design/methodology/approach The testing rig can simulate a variety of tools, tasks and operator conditions. The device includes custom data-acquisition electronics and graphical user interface-based software. The simulation of the human hand–arm dynamics is based on the rig’s four-bar mechanism-based design and mechanical components that provide adjustable stiffness (via pneumatic cylinder) and mass (via plates) and non-adjustable damping. The stiffness and mass values used are based on an experimentally validated hand–arm model that includes a database of model parameters. This database is with respect to gender and working posture, corresponding to experienced tool operators from a prior study. Findings The rig measures tool handle force and displacement responses simultaneously. Peak force and displacement coefficients of determination (R2) between rig estimations and human testing measurements were 0.98 and 0.85, respectively, for the same set of tools, tasks and operator conditions. The rig also provides predicted tool operator acceptability ratings, using a data set from a prior study of discomfort in experienced operators during torque tool use. Research limitations/implications Deviations from linearity may influence handle force and displacement measurements. Stiction (Coulomb friction) in the overall rig, as well as in the air cylinder piston, is neglected. The rig’s mechanical damping is not adjustable, despite the fact that human hand–arm damping varies with respect to gender and working posture. Deviations from these assumptions may affect the correlation of the handle force and displacement measurements with those of human testing for the same tool, task and operator conditions. Practical implications This test rig will allow the rapid assessment of the ergonomic performance of DC torque tools, saving considerable time in lineside applications and reducing the risk of worker injury. DC torque tools are an extremely effective way of increasing production rate and improving torque accuracy. Being a complex dynamic system, however, the performance of DC torque tools varies in each application. Changes in worker mass, damping and stiffness, as well as joint stiffness and tool program, make each application unique. This test rig models all of these factors and allows quick assessment. Social implications The use of this tool test rig will help to identify and understand risk factors that contribute to musculoskeletal disorders (MSDs) associated with the use of torque tools. Tool operators are subjected to large impulsive handle reaction forces, as joint torque builds up while tightening a fastener. Repeated exposure to such forces is associated with muscle soreness, fatigue and physical stress which are also risk factors for upper extremity injuries (MSDs; e.g. tendinosis, myofascial pain). Eccentric exercise exertions are known to cause damage to muscle tissue in untrained individuals and affect subsequent performance. Originality/value The rig provides a novel means for quantitative, repeatable dynamic evaluation of RA powered torque tools and objective selection of tightening programs. Compared to current static tool assessment methods, dynamic testing provides a more realistic tool assessment relative to the tool operator’s experience. This may lead to improvements in tool or controller design and reduction in associated musculoskeletal discomfort in operators.


1990 ◽  
Vol 112 (4) ◽  
pp. 507-511 ◽  
Author(s):  
S. F. Duffy ◽  
J. M. Manderscheid

A macroscopic noninteractive reliability model for ceramic matrix composites is presented. The model is multiaxial and applicable to composites that can be characterized as orthotropic. Tensorial invariant theory is used to create an integrity basis with invariants that correspond to physical mechanisms related to fracture. This integrity basis is then used to construct a failure function per unit volume (or area) of material. It is assumed that the overall strength of the composite is governed by weakest link theory. This leads to a Weibull-type model similar in nature to the principle of independent action (PIA) model for isotropic monolithic ceramics. An experimental program to obtain model parameters is briefly discussed. In addition, qualitative features of the model are illustrated by presenting reliability surfaces for various model parameters.


2011 ◽  
Vol 71-78 ◽  
pp. 937-944
Author(s):  
Ping Jie Cheng ◽  
Han Zhou Hu ◽  
Shu Guang Hu

The durability of concrete structure has become an important field of civil engineering at home and abroad, and how to determine the environmental effects of typical durability of concrete structure key parameters become the key. Proposed by different domestic and foreign scholars to study durability parameters of concrete structure of different models, different models are different in the source, type, model parameters and applicable conditions. In this paper, some typical models are reviewed and analyzed from two major aspects of the durability of concrete, the deterioration of concrete and the steel corrosion.


2020 ◽  
pp. 1-10
Author(s):  
Matthew K. Seeley ◽  
Seong Jun Son ◽  
Hyunsoo Kim ◽  
J. Ty Hopkins

Context: Patellofemoral pain (PFP) is often categorized by researchers and clinicians using subjective self-reported PFP characteristics; however, this practice might mask important differences in movement biomechanics between PFP patients. Objective: To determine whether biomechanical differences exist during a high-demand multiplanar movement task for PFP patients with similar self-reported PFP characteristics but different quadriceps activation levels. Design: Cross-sectional design. Setting: Biomechanics laboratory. Participants: A total of 15 quadriceps deficient and 15 quadriceps functional (QF) PFP patients with similar self-reported PFP characteristics. Intervention: In total, 5 trials of a high-demand multiplanar land, cut, and jump movement task were performed. Main Outcome Measures: Biomechanics were compared at each percentile of the ground contact phase of the movement task (α = .05) between the quadriceps deficient and QF groups. Biomechanical variables included (1) whole-body center of mass, trunk, hip, knee, and ankle kinematics; (2) hip, knee, and ankle kinetics; and (3) ground reaction forces. Results: The QF patients exhibited increased ground reaction force, joint torque, and movement, relative to the quadriceps deficient patients. The QF patients exhibited: (1) up to 90, 60, and 35 N more vertical, posterior, and medial ground reaction force at various times of the ground contact phase; (2) up to 4° more knee flexion during ground contact and up to 4° more plantarflexion and hip extension during the latter parts of ground contact; and (3) up to 26, 21, and 48 N·m more plantarflexion, knee extension, and hip extension torque, respectively, at various times of ground contact. Conclusions: PFP patients with similar self-reported PFP characteristics exhibit different movement biomechanics, and these differences depend upon quadriceps activation levels. These differences are important because movement biomechanics affect injury risk and athletic performance. In addition, these biomechanical differences indicate that different therapeutic interventions may be needed for PFP patients with similar self-reported PFP characteristics.


2017 ◽  
Vol 31 (9) ◽  
pp. 814-826 ◽  
Author(s):  
Natalia Sánchez ◽  
Ana Maria Acosta ◽  
Roberto Lopez-Rosado ◽  
Arno H. A. Stienen ◽  
Julius P. A. Dewald

Although global movement abnormalities in the lower extremity poststroke have been studied, the expression of specific motor impairments such as weakness and abnormal muscle and joint torque coupling patterns have received less attention. We characterized changes in strength, muscle coactivation and associated joint torque couples in the paretic and nonparetic extremity of 15 participants with chronic poststroke hemiparesis (age 59.6 ± 15.2 years) compared with 8 age-matched controls. Participants performed isometric maximum torques in hip abduction, adduction, flexion and extension, knee flexion and extension, ankle dorsi- and plantarflexion and submaximal torques in hip extension and ankle plantarflexion. Surface electromyograms (EMGs) of 10 lower extremity muscles were measured. Relative weakness (paretic extremity compared with the nonparetic extremity) was measured in poststroke participants. Differences in EMGs and joint torques associated with maximum voluntary torques were tested using linear mixed effects models. Results indicate significant poststroke torque weakness in all degrees of freedom except hip extension and adduction, adductor coactivation during extensor tasks, in addition to synergistic muscle coactivation patterns. This was more pronounced in the paretic extremity compared with the nonparetic extremity and with controls. Results also indicated significant interjoint torque couples during maximum and submaximal hip extension in both extremities of poststroke participants and in controls only during maximal hip extension. Additionally, significant interjoint torque couples were identified only in the paretic extremity during ankle plantarflexion. A better understanding of these motor impairments is expected to lead to more effective interventions for poststroke gait and posture.


Sign in / Sign up

Export Citation Format

Share Document