To What Extent Does Not Wearing Shoes Affect the Local Dynamic Stability of Walking?: Effect Size and Intrasession Repeatability

2014 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Philippe Terrier ◽  
Fabienne Reynard

Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.

Author(s):  
Jian Liu ◽  
Thurmon E. Lockhart ◽  
Kevin Granata

Occupational load carrying tasks are considered one of the major factors contributing to slip and fall injuries. The objective of the current study was to explore the feasibility to assess the stability changes associated with load carrying by local dynamic stability measures. Twenty-five young participants were involved in a treadmill walking study, with their trunk acceleration profiles measured wirelessly by a tri-axial accelerometer. Finite time local dynamic stability was quantified by maximum Lyapunov exponents (maxLE). The results showed a significant increase in long term maxLE in load condition, indicating the declined local dynamic stability due to the load carrying. Thus, current study confirmed the discriminative validity and sensitivity of local dynamic stability measure and its utility in the load carrying scenario.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Yuyang Qian ◽  
Kaiming Yang ◽  
Yu Zhu ◽  
Wei Wang ◽  
Chenhui Wan

Abstract The purpose of this study was to assess the influence of gait stability induced by treadmill accelerations during self-paced treadmill walking (SPW). Local dynamic stability of three-dimensional (3D) upper body accelerations and hip angles were quantified. The results demonstrated that SPW was more unstable and had higher risk of falling than fixed-speed treadmill walking (FSW) under the impact of treadmill accelerations. The frequency domain analysis of treadmill speed indicated that intrastride treadmill speed variation was the dominating cause of the instability, and self-paced control strategies which can reduce the intrastride variation may achieve higher gait stability during SPW.


Author(s):  
Erik Chumacero-Polanco ◽  
James Yang ◽  
James Chagdes

Abstract Study of human upright posture (UP) stability is of great relevance to fall prevention and rehabilitation, especially for those with balance deficits for whom a balance board (BB) is a widely used mechanism to improve balance. The stability of the human-BB system has been widely investigated from a dynamical system point of view. However, most studies assume small disturbances, which allow to linearize the nonlinear human-BB dynamical system, neglecting the effect of the nonlinear terms on the stability. Such assumption has been useful to simplify the system and use bifurcation analyses to determine local dynamic stability properties. However, dynamic stability analysis results through such linearization of the system have not been verified. Moreover, bifurcation analyses cannot provide insight on dynamical behaviors for different points within the stable and unstable regions. In this study, we numerically solve the nonlinear delay differential equation that describes the human-BB dynamics for a range of selected parameters (proprioceptive feedback and time-delays). The resulting solutions in time domain are used to verify the stability properties given by the bifurcation analyses and to compare different dynamical behaviors within the regions. Results show that the selected bifurcation parameters have significant impacts not only on UP stability but also on the amplitude, frequency, and increasing or decaying rate of the resulting trajectory solutions.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Ryan B. Graham ◽  
Stephen H. M. Brown

To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7690
Author(s):  
Christopher A. Bailey ◽  
Thomas K. Uchida ◽  
Julie Nantel ◽  
Ryan B. Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good to excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local dynamic stability.


2020 ◽  
Author(s):  
Rina M. Magnani ◽  
Sjoerd M. Bruijn ◽  
Jaap H. van Dieën ◽  
Patrick A. Forbes

AbstractStable walking relies critically on motor responses to signals of head motion provided by the vestibular system, which are phase-dependent and modulated differently within each muscle. It is unclear, however, whether these vestibular contributions also vary according to the stability of the walking task. Here we investigate how vestibular signals influence muscles relevant for gait stability (medial gastrocnemius, gluteus medius and erector spinae) – as well as their net effect on ground reaction forces – while humans walked normally, with mediolateral stabilization, wide and narrow steps. We estimated coherence of electrical vestibular stimulation (EVS) with muscle activity and mediolateral ground reaction forces, together with local dynamic stability of trunk kinematics. Walking with external stabilization increased local dynamic stability and decreased coherence between EVS and all muscles/forces compared to normal walking. Wide-base walking also decreased vestibulo-motor coherence, though gait stability did not differ. Conversely, narrow-base walking increased local dynamic stability, but produced muscle-specific increases and decreases in coherence that resulted in a net increase in vestibulo-motor coherence with ground reaction forces. Overall, our results show that while vestibular contributions may vary with gait stability, they more critically depend on the stabilization demands (i.e. control effort) needed to maintain a stable walking pattern.


2016 ◽  
Vol 48 (5) ◽  
pp. 455-467 ◽  
Author(s):  
Timothy A. Worden ◽  
Shawn M. Beaudette ◽  
Stephen H. M. Brown ◽  
Lori Ann Vallis

Author(s):  
Seong Hyun Moon ◽  
Christopher Frames ◽  
Rahul Soangra ◽  
Thurmon Lockhart

Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stability of the lower extremity of five subjects as they performed a simulated rucksack march on a treadmill. The Motek Gait Real-time Interactive Laboratory (GRAIL) was utilized to replicate the environment of the rucksack march. The first walking trial was without a rucksack and the second set was executed with the All-Purpose Lightweight Individual Carrying Equipment (ALICE), an older version of the rucksack, and the third set was executed with the newer rucksack version, Modular Lightweight Load Carrying Equipment (MOLLE). In this experiment, the Inertial Measurement Unit (IMU) system, Dynaport was used to measure the ambulatory data of the subject. This experiment required subjects to walk continuously for 200 seconds with a 20kg rucksack, which simulates the real rucksack march training. To determine the dynamic stability of different load carriage and normal walking condition, Local Dynamic Stability (LDS) was calculated to quantify its stability. The results presented that comparing Maximum Lyapunov Exponent (LyE) of normal walking was significantly lower compared to ALICE (P=0.000007) and MOLLE (P=0.00003), however, between ALICE and MOLLE rucksack walking showed no significant difference (P=0.441). The five subjects showed significantly improved dynamic stability when walking without a rucksack in comparison with wearing the equipment. In conclusion, we discovered wearing a rucksack result in a significant (P <  0.0001) reduction in dynamic stability.


Sign in / Sign up

Export Citation Format

Share Document