Comparison of Plantar Flexor Musculotendinous Stiffness, Geometry, and Architecture in Male Runners With and Without a History of Tibial Stress Fracture

2015 ◽  
Vol 31 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Derek N. Pamukoff ◽  
J. Troy Blackburn

Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university’s varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P< .001), greater Achilles tendon stiffness (P= .004), and lesser Achilles tendon elongation (P= .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length.

2010 ◽  
Vol 108 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of concentric contractions and passive stretching on musculotendinous stiffness and muscle activity were studied in 18 healthy human volunteers. Passive and concentric plantar flexor joint moment data were recorded on an isokinetic dynamometer with simultaneous electromyogram (EMG) monitoring of the triceps surae, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction. The subjects then performed six 8-s ramped maximal voluntary concentric contractions before repeating both the passive and concentric trials. Concentric moment was significantly reduced (6.6%; P < 0.01), which was accompanied by, and correlated with ( r = 0.60–0.94; P < 0.05), significant reductions in peak triceps surae EMG amplitude (10.2%; P < 0.01). Achilles tendon stiffness was significantly reduced (11.7%; P < 0.01), but no change in gastrocnemius medialis muscle operating length was detected. The subjects then performed three 60-s static plantar flexor stretches before being retested 2 and 30 min poststretch. A further reduction in concentric joint moment (5.8%; P < 0.01) was detected poststretch at 90% of range of motion, with no decrease in muscle activity or Achilles tendon stiffness, but a significant increase in muscle operating length and decrease in tendon length was apparent at this range of motion ( P < 0.05). Thirty minutes after stretching, muscle activity significantly recovered to pre-maximal voluntary concentric contractions levels, whereas concentric moment and Achilles tendon stiffness remained depressed. These data show that the performance of maximal concentric contractions can substantially reduce neuromuscular activity and muscle force, but this does not prevent a further stretch-induced loss in active plantar flexor joint moment. Importantly, the different temporal changes in EMG and concentric joint moment indicate that a muscle-based mechanism was likely responsible for the force losses poststretch.


2009 ◽  
Vol 107 (4) ◽  
pp. 1181-1189 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of isometric contractions and passive stretching on muscle-tendon mechanics and muscle activity were studied in 16 healthy human volunteers. First, peak concentric and passive ankle joint moment data were recorded on an isokinetic dynamometer with electromyographic monitoring of the triceps surae; real-time motion analysis of the lower leg and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Second, the subjects performed six 8-s maximal voluntary isometric contractions (MVICs) before repeating the passive and active trials. Although there was no decrease in isometric joint moment after MVICs, peak concentric moment was significantly reduced (11.5%, P < 0.01). This was accompanied by, and correlated with ( r = 0.90, P < 0.01), significant reductions in peak triceps surae electromyographic amplitude (21.0%, P < 0.01). Achilles tendon stiffness (10.9%, P < 0.01) and passive joint moment (4.9%, P < 0.01) were also significantly reduced. Third, the subjects performed three 60-s static plantar flexor stretches before being retested 2 and 30 min after stretch. The stretch protocol caused no significant change in any measure. At 30 min after stretching, significant recovery in concentric moment and muscle activity was detected at dorsiflexed joint angles, while Achilles tendon stiffness and passive joint moment remained significantly reduced. These data show that the performance of MVICs interrupts the normal stretch-induced losses in active and passive plantar flexor joint moment and neuromuscular activity, largely because concentric strength and tendon properties were already affected. Importantly, the decrease in Achilles tendon stiffness remained 30 min later, which may be an important etiological factor for muscle-tendon strain injury risk.


2009 ◽  
Vol 106 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with ( r = 0.81 ; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.


2013 ◽  
Vol 114 (5) ◽  
pp. 523-537 ◽  
Author(s):  
Alexandre Fouré ◽  
Antoine Nordez ◽  
Christophe Cornu

Eccentric training is a mechanical loading classically used in clinical environment to rehabilitate patients with tendinopathies. In this context, eccentric training is supposed to alter tendon mechanical properties but interaction with the other components of the muscle-tendon complex remains unclear. The aim of this study was to determine the specific effects of 14 wk of eccentric training on muscle and tendon mechanical properties assessed in active and passive conditions in vivo. Twenty-four subjects were randomly divided into a trained group ( n = 11) and a control group ( n = 13). Stiffness of the active and passive parts of the series elastic component of plantar flexors were determined using a fast stretch during submaximal isometric contraction, Achilles tendon stiffness and dissipative properties were assessed during isometric plantar flexion, and passive stiffness of gastrocnemii muscles and Achilles tendon were determined using ultrasonography while ankle joint was passively moved. A significant decrease in the active part of the series elastic component stiffness was found ( P < 0.05). In contrast, a significant increase in Achilles tendon stiffness determined under passive conditions was observed ( P < 0.05). No significant change in triceps surae muscles and Achilles tendon geometrical parameters was shown ( P > 0.05). Specific changes in muscle and tendon involved in plantar flexion are mainly due to changes in intrinsic mechanical properties of muscle and tendon tissues. Specific assessment of both Achilles tendon and plantar flexor muscles allowed a better understanding of the functional behavior of the muscle-tendon complex and its adaptation to eccentric training.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
John W. Ramsay ◽  
Thomas S. Buchanan ◽  
Jill S. Higginson

Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flexor weakness is due to uniform changes in individual muscle force contributions. Fascicle lengths and pennation angles for the soleus, medial, and lateral gastrocnemius were measured using ultrasound and compared between ten hemiparetic poststroke subjects and ten healthy controls. Physiological cross-sectional areas and force contributions to poststroke plantar flexor torque were estimated for each muscle. No statistical differences were observed for any muscle fascicle lengths or for the lateral gastrocnemius and soleus pennation angles between paretic, nonparetic, and healthy limbs. There was a significant decrease (P<0.05) in the paretic medial gastrocnemius pennation angle compared to both nonparetic and healthy limbs. Physiological cross-sectional areas and force contributions were smaller on the paretic side. Additionally, bilateral muscle contributions to plantar flexor torque remained the same. While the architecture of each individual plantar flexor muscle is affected differently after stroke, the relative contribution of each muscle remains the same.


2020 ◽  
Author(s):  
Sebastian Bohm ◽  
Falk Mersmann ◽  
Alessandro Santuz ◽  
Adamantios Arampatzis

AbstractDuring human running, the soleus, as the main plantar flexor muscle, generates the majority of the mechanical work through active shortening. The fraction of chemical energy that is converted into muscular work (i.e. the enthalpy efficiency) depends on the muscle shortening velocity. Here, we investigated the soleus muscle fascicle behavior during running with respect to the enthalpy efficiency as a mechanism that could explain previously reported improvements in running economy after exercise-induced increases of plantar flexor strength and Achilles tendon stiffness. Healthy amateur runners were randomly assigned to a control (n=10) or intervention group (n=13), which performed a specific 14-week muscle-tendon training. Significant increases in plantar flexor maximum strength (10%) and Achilles tendon stiffness (31%) yet reduced metabolic cost of running (4%) was found only in the intervention group (p<0.05). Following training, the soleus fascicle velocity profile throughout stance was altered, with the fascicles operating at a higher enthalpy efficiency during the phase of muscle-tendon unit lengthening (15%) and in average over stance (7%, p<0.05). These findings show that the improvements in energetic cost following increases in plantar flexor strength and Achilles tendon stiffness can be attributed to increased enthalpy efficiency of the operating soleus. This provides the first experimental evidence that the soleus enthalpy efficiency is a determinant of human running economy. Furthermore, the current results imply that the soleus energy production in the first part of the stance phase were the muscle-tendon unit is lengthening is crucial for the overall metabolic energy cost of running.


2019 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kathryn M. O’Connor ◽  
Josh R. Baxter

ABSTRACTPlantarflexor functional deficits are associated with poor outcomes in patients following Achilles tendon rupture. In this longitudinal study, we analyzed the fascicle length and pennation angle of the medial gastrocnemius muscle and the length of the Achilles tendon using ultrasound imaging. To determine the relationship between muscle remodeling and functional deficits measured at 3 months after injury, we correlated the reduction in fascicle length and increase in pennation angle with peak torque measured during isometric plantarflexor contractions and peak power measured during isokinetic plantarflexor contractions. We found that the medial gastrocnemius underwent an immediate change in structure, characterized by decreased length and increased pennation of the muscle fascicles. This decrease in fascicle length was coupled with an increase in tendon length. These changes in muscle-tendon structure persisted throughout the first three months following rupture. Deficits in peak plantarflexor power were moderately correlated with decreased fascicle length at 120 degrees per second (R2= 0.424,P= 0.057) and strongly correlated with decreased fascicle length at 210 degrees per second (R2= 0.737,P= 0.003). However, increases in pennation angle did not explain functional deficits. These findings suggest that muscle-tendon structure is detrimentally affected following Achilles tendon rupture. Plantarflexor power deficits are positively correlated with the magnitude of reductions in fascicle length. Preserving muscle structure following Achilles tendon rupture should be a clinical priority to maintain patient function.


2004 ◽  
Vol 97 (5) ◽  
pp. 1908-1914 ◽  
Author(s):  
Jens Bojsen-Møller ◽  
Philip Hansen ◽  
Per Aagaard ◽  
Ulla Svantesson ◽  
Michael Kjaer ◽  
...  

The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean ± SD; age 30 ± 7 yr, body mass 76.8 ± 5.5 kg, height 1.83 ± 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125°). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 ± 20 vs. 97 ± 11 N·m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 ± 1.7 vs. 8.9 ± 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 ± 1.0 vs. 7.9 ± 1.2 mm). The amount and “direction” of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.


2011 ◽  
Vol 110 (2) ◽  
pp. 407-415 ◽  
Author(s):  
Emika Kato ◽  
Stéphanie Vieillevoye ◽  
Costantino Balestra ◽  
Nathalie Guissard ◽  
Jacques Duchateau

This paper examines the acute effect of a bout of static stretches on torque fluctuation during an isometric torque-matching task that required subjects to sustain isometric contractions as steady as possible with the plantar flexor muscles at four intensities (5, 10, 15, and 20% of maximum) for 20 s. The stretching bout comprised five 60-s passive stretches, separated by 10-s rest. During the torque-matching tasks and muscle stretching, the torque (active and passive) and surface electromyogram (EMG) of the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) were continuously recorded. Concurrently, changes in muscle architecture (fascicle length and pennation angle) of the MG were monitored by ultrasonography. The results showed that during stretching, passive torque decreased and fascicle length increased gradually. Changes in these two parameters were significantly associated ( r2 = 0.46; P < 0.001). When data from the torque-matching tasks were collapsed across the four torque levels, stretches induced greater torque fluctuation ( P < 0.001) and enhanced EMG activity ( P < 0.05) in MG and TA muscles with no change in coactivation. Furthermore, stretching maneuvers produced a greater decrease (∼15%; P < 0.001) in fascicle length during the torque-matching tasks and change in torque fluctuation (CV) was positively associated with changes in fascicle length ( r2 = 0.56; P < 0.001), MG and TA EMG activities, and coactivation ( r2 = 0.35, 0.34, and 0.35, respectively; P < 0.001). In conclusion, these observations indicate that repeated stretches can decrease torque steadiness by increasing muscle compliance and EMG activity of muscles around the joint. The relative influence of such adaptations, however, may depend on the torque level during the torque-matching task.


Sign in / Sign up

Export Citation Format

Share Document