Effects of Saddle Height, Pedaling Cadence, and Workload on Joint Kinetics and Kinematics During Cycling

2010 ◽  
Vol 19 (3) ◽  
pp. 301-314 ◽  
Author(s):  
Rodrigo R. Bini ◽  
Aline C. Tamborindeguy ◽  
Carlos B. Mota

Context:It is not clear how noncyclists control joint power and kinematics in different mechanical setups (saddle height, workload, and pedaling cadence). Joint mechanical work contribution and kinematics analysis could improve our comprehension of the coordinative pattern of noncyclists and provide evidence for bicycle setup to prevent injury.Objective:To compare joint mechanical work distribution and kinematics at different saddle heights, workloads, and pedaling cadences.Design:Quantitative experimental research based on repeated measures.Setting:Research laboratory.patients:9 healthy male participants 22 to 36 years old without competitive cycling experience.Intervention:Cycling on an ergometer in the following setups: 3 saddle heights (reference, 100% of trochanteric height; high, + 3 cm; and low, − 3 cm), 2 pedaling cadences (40 and 70 rpm), and 3 workloads (0, 5, and 10 N of braking force).Main Outcome Measures:Joint kinematics, joint mechanical work, and mechanical work contribution of the joints.Results:There was an increased contribution of the ankle joint (P = .04) to the total mechanical work with increasing saddle height (from low to high) and pedaling cadence (from 40 to 70 rpm, P < .01). Knee work contribution increased when saddle height was changed from high to low (P < .01). Ankle-, knee-, and hip-joint kinematics were affected by saddle height changes (P < .01).Conclusions:At the high saddle position it could be inferred that the ankle joint compensated for the reduced knee-joint work contribution, which was probably effective for minimizing soft-tissue damage in the knee joint (eg, anterior cruciate ligament and patellofemoral cartilage). The increase in ankle work contribution and changes in joint kinematics associated with changes in pedaling cadence have been suggested to indicate poor pedaling-movement skill.

Author(s):  
Yunqi Tang ◽  
Donghai Wang ◽  
Yong Wang ◽  
Keyi Yin ◽  
Cui Zhang ◽  
...  

The purpose of this study was to investigate the effects of surface slope and body posture (i.e., seated and standing) on lower extremity joint kinetics during cycling. Fourteen participants cycled at 250 watts power in three cycling conditions: level seated, uphill seated and uphill standing at a 14% slope. A motion analysis system and custom instrumented pedal were used to collect the data of fifteen consecutive cycles of kinematics and pedal reaction force. One crank cycle was equally divided into four phases (90° for each phase). A two-factor repeated measures MANOVA was used to examine the effects of the slope and posture on the selected variables. Results showed that both slope and posture influenced joint moments and mechanical work in the hip, knee and ankle joints (p < 0.05). Specifically, the relative contribution of the knee joint to the total mechanical work increased when the body posture changed from a seated position to a standing position. In conclusion, both surface slope and body posture significantly influenced the lower extremity joint kinetics during cycling. Besides the hip joint, the knee joint also played the role as the power source during uphill standing cycling in the early downstroke phase. Therefore, adopting a standing posture for more power output during uphill cycling is recommended, but not for long periods, in view of the risk of knee injury.


2018 ◽  
Vol 34 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Wing-Kai Lam ◽  
Winson Chiu-Chun Lee ◽  
Wei Min Lee ◽  
Christina Zong-Hao Ma ◽  
Pui Wah Kong

This study examined the effects of shoes’ segmented forefoot stiffness on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. Seventeen university basketball players performed running vertical jumps and 5-m sprints at maximum effort with 3 basketball shoes of various forefoot plate conditions (medial plate, medial + lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to examine the differences in athletic performance, joint kinematics, and joint kinetics among the 3 footwear conditions (α = .05). Results indicated that participants wearing medial + lateral plates shoes demonstrated 2.9% higher jump height than those wearing control shoes (P = .02), but there was no significant differences between medial plate and control shoes (P > .05). Medial plate shoes produced greater maximum plantar flexion velocity than the medial + lateral plates shoes (P < .05) during sprinting. There were no significant differences in sprint time. These findings implied that inserting plates spanning both the medial and lateral aspects of the forefoot could enhance jumping, but not sprinting performances. The use of a medial plate alone, although induced greater plantar flexion velocity at the metatarsophalangeal joint during sprinting, was not effective in improving jump heights or sprint times.


2017 ◽  
Vol 45 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Richard W. Willy ◽  
Annelie Brorsson ◽  
Hayley C. Powell ◽  
John D. Willson ◽  
Roy Tranberg ◽  
...  

Background: Deficits in plantarflexor function are common after an Achilles tendon rupture. These deficits may result in an altered distribution of joint loads during lower extremity tasks. Hypothesis: We hypothesized that, regardless of treatment, the Achilles tendon–ruptured limb would exhibit deficits in ankle kinematics and joint power while exhibiting elevated knee joint power and patellofemoral joint loads during walking, jogging, and hopping. We further hypothesized that this loading pattern would be most evident during jogging and hopping. Study Design: Controlled laboratory study. Methods: Thirty-four participants (17 participants treated surgically, 17 treated nonsurgically) were tested at a mean 6.1 ± 2.0 years after an Achilles tendon rupture. Lower extremity kinematics and kinetics were assessed while participants completed walking, jogging, and single-legged hopping trials. Patellofemoral joint stress was calculated via a musculoskeletal model. Data were analyzed via mixed-model repeated analyses of variance (α = .05) and the limb symmetry index (LSI). Results: No differences ( P ≥ .05) were found between the surgical and nonsurgical groups. In both groups, large side-to-side deficits in the plantarflexion angle at toeoff (LSI: 53.5%-73.9%) were noted during walking, jogging, and hopping in the involved limb. Side-to-side deficits in the angular velocity were only present during jogging (LSI: 93.5%) and hopping (LSI: 92.5%). This pattern was accompanied by large deficits in eccentric (LSI: 80.8%-94.7%) and concentric (LSI: 82.2%-84.7%) ankle joint powers in the involved limb during all tasks. Interestingly, only jogging and hopping demonstrated greater knee joint loads when compared with the uninvolved limb. Concentric knee power was greater during jogging (LSI: 117.2%) and hopping (LSI: 115.9%) compared with the uninvolved limb. Similarly, peak patellofemoral joint stress was greater in the involved limb during jogging (LSI: 107.5%) and hopping (LSI: 107.1%), while only hopping had a greater loading rate of patellofemoral joint stress (LSI: 110.9%). Conclusion: Considerable side-to-side deficits in plantarflexor function were observed during walking, jogging, and hopping in patients after an Achilles tendon rupture. As a possible compensation, increased knee joint loads were present but only during jogging and hopping. Clinical Relevance: These data suggest that after an Achilles tendon rupture, patients may be susceptible to greater mechanical loading of the knee during sporting tasks, regardless of surgical or nonsurgical treatment.


2010 ◽  
Vol 19 (2) ◽  
pp. 136-148 ◽  
Author(s):  
Mitchell L. Cordova ◽  
Yosuke Takahashi ◽  
Gregory M. Kress ◽  
Jody B. Brucker ◽  
Alfred E. Finch

Objective:To investigate the effects of external ankle support (EAS) on lower extremity joint mechanics and vertical ground-reaction forces (VGRF) during drop landings.Design:A 1 × 3 repeated-measures, crossover design.Setting:Biomechanics research laboratory.Patients:13 male recreationally active basketball players (age 22.3 ± 2.2 y, height 177.5 ± 7.5 cm, mass 72.2 ± 11.4 kg) free from lower extremity pathology for the 12 mo before the study.Interventions:Subjects performed a 1-legged drop landing from a standardized height under 3 different ankle-support conditions.Main Outcome Measures:Hip, knee, and ankle angular displacement along with specific temporal (TGRFz1, TGRFz2; s) and spatial (GRFz1, GRFz2; body-weight units [BW]) characteristics of the VGRF vector were measured during a drop landing.Results:The tape condition (1.08 ± 0.09 BW) demonstrated less GRFz1 than the control (1.28 ± 0.16 BW) and semirigid conditions (1.28 ± 0.21 BW; P < .0001), and GRFz2 was unaffected. For TGRFz1, no-support displayed slower time (0.017 ± 0.004 s) than the semirigid (0.014 ± 0.001 s) and tape conditions (0.014 ± 0.002 s; P < .05). For TGRFz2, no-support displayed slower time (0.054 ±.006 s) than the semirigid (0.050 ± 0.006 s) and tape conditions (0.045 ± 0.004 s; P < .05). Semirigid bracing was slower than the tape condition, as well (P < .05). Ankle-joint displacement was less in the tape (34.6° ± 7.7°) and semirigid (36.8° ± 9.3°) conditions than in no-support (45.7° ± 7.3°; P < .05). Knee-joint displacement was larger in the no-support (45.1° ± 9.0°) than in the semirigid (42.6° ± 6.8°; P < .05) condition. Tape support (43.8° ± 8.7°) did not differ from the semirigid condition (P > .05). Hip angular displacement was not affected by EAS (F2,24 = 1.47, P = .25).Conclusions:EAS reduces ankle- and knee-joint displacement, which appear to influence the spatial and temporal characteristics of GRFz1 during drop landings.


2015 ◽  
Vol 40 (3) ◽  
pp. 311-319 ◽  
Author(s):  
Elizabeth Russell Esposito ◽  
Jennifer M Aldridge Whitehead ◽  
Jason M Wilken

Background: Individuals with leg amputations who use passive prostheses have greater metabolic demands than non-amputees likely due to limited net positive work compared to a biological ankle. New powered ankle–foot prostheses can perform net positive mechanical work to aid push-off capabilities, which may reduce metabolic demands. Objectives: Compare step-to-step transition work and metabolic demand during level and inclined walking using passive and powered ankle-foot prostheses. Study Design: Repeated measures. Methods: Six individuals with transtibial amputation and six able-bodied controls walked at a standardized speed across level ground and up a 5° incline. Calculated measures included mechanical work during step-to-step transitions from the trailing prosthetic to leading intact limb, steady state metabolic rate, and ankle joint kinetics and kinematics. Results: The powered prosthesis generated 63% greater trailing limb step-to-step transition work than the passive during level walking only (p = 0.004). Metabolic rate was lower with the powered prosthesis during level (p = 0.006) but not inclined walking (p = 0.281). The powered prosthesis increased ankle power compared to the passive, to the extent that power was normalized to controls during inclined walking and greater than controls during level walking. Conclusion: The powered prosthesis improved ankle power, metabolic rate, and step-to-step transition work on level ground, with few negative consequences on inclines. These results may be used to guide the development and use of actively powered prosthetic devices in high-functioning individuals. Clinical relevance Overall, powered devices offer biomechanical and metabolic benefits over passive energy storage and return designs on level ground and perform as well as a passive model on inclines. The lower metabolic demand when using the powered device may delay fatigue for individuals with transtibial amputation when walking over level ground.


2012 ◽  
Vol 22 (4) ◽  
pp. 598-606 ◽  
Author(s):  
Eamonn Delahunt ◽  
Anna Prendiville ◽  
Lauren Sweeney ◽  
Mark Chawke ◽  
Judy Kelleher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document