scholarly journals Segmented Forefoot Plate in Basketball Footwear: Does it Influence Performance and Foot Joint Kinematics and Kinetics?

2018 ◽  
Vol 34 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Wing-Kai Lam ◽  
Winson Chiu-Chun Lee ◽  
Wei Min Lee ◽  
Christina Zong-Hao Ma ◽  
Pui Wah Kong

This study examined the effects of shoes’ segmented forefoot stiffness on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. Seventeen university basketball players performed running vertical jumps and 5-m sprints at maximum effort with 3 basketball shoes of various forefoot plate conditions (medial plate, medial + lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to examine the differences in athletic performance, joint kinematics, and joint kinetics among the 3 footwear conditions (α = .05). Results indicated that participants wearing medial + lateral plates shoes demonstrated 2.9% higher jump height than those wearing control shoes (P = .02), but there was no significant differences between medial plate and control shoes (P > .05). Medial plate shoes produced greater maximum plantar flexion velocity than the medial + lateral plates shoes (P < .05) during sprinting. There were no significant differences in sprint time. These findings implied that inserting plates spanning both the medial and lateral aspects of the forefoot could enhance jumping, but not sprinting performances. The use of a medial plate alone, although induced greater plantar flexion velocity at the metatarsophalangeal joint during sprinting, was not effective in improving jump heights or sprint times.

2011 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Jeremy D. Smith ◽  
Eric L. Dugan

The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n= 6) and females (n= 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.


2016 ◽  
Vol 9 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Glenn S. Fleisig ◽  
Alek Z. Diffendaffer ◽  
Kyle T. Aune ◽  
Brett Ivey ◽  
Walter A. Laughlin

Background: Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Hypothesis: Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Study Design: Controlled laboratory study. Methods: Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Results: Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. Conclusions: While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. Clinical Relevance: As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.


2008 ◽  
Vol 22 (3) ◽  
pp. 304-315 ◽  
Author(s):  
Guillaume R. Coudevylle ◽  
Kathleen A. Martin Ginis ◽  
Jean-Pierre Famose ◽  
Christophe Gernigon

The purpose of the present experiment was to examine whether the use of selfhandicapping strategies influences participants’ anxiety levels before athletic performance. Seventy-one competitive basketball players participated in the study. A repeated measures design was used, such that state cognitive and somatic anxiety intensity and direction were measured before and after participants were given the opportunity to self-handicap. Overall, participants reported their cognitive anxiety to be more facilitating after they had the opportunity to self-handicap. Thus, participants who were given the opportunity to self-handicap (i.e., use claimed and behavioral self-handicaps), reported greater increases in perceptions of cognitive anxiety as facilitating their performance. This study shows the importance of looking at anxiety direction, and not just anxiety intensity, when examining self-handicapping’s effects on anxiety. Implications for sport psychologists are proposed.


Author(s):  
Yi Wang ◽  
Wing-Kai Lam ◽  
Cheuk-Hei Cheung ◽  
Aaron Kam-Lun Leung

Red is perceived as a “winning color”, which may influence actual and perceived performances in sports, but little effort has been done to assess the added value on colored foot insoles in basketball movements. This study examined if colored foot insole would influence perceived comfort and lower extremity biomechanics during drop landing. Nineteen male basketball players performed drop landing trials with different insoles (red arch-support, white arch-support, and white-flat) and landing heights (0.45 and 0.61 m). Two-way (Insole x Height) ANOVAs with repeated measures were performed on each of the knee and ankle angles and moments variables. Wearing red arch-support insoles induced better perception of forefoot and rearfoot cushioning and overall comfort but smaller plantarflexion moment than the white-flat insoles (p < 0.05). Increased landing height was related to higher ground reaction loading, sagittal flexion angles, range of motion, and joint moments but smaller ankle eversion (p < 0.05). Findings indicate that foot insoles might have influenced comfort perception and joint kinetics, but not joint kinematics. The use of red color in foot insoles could potentially maximize the effectiveness of foot insoles in a way that alters comfort perception and motor control during landing, with implications for risk of injury.


2014 ◽  
Vol 30 (3) ◽  
pp. 446-460 ◽  
Author(s):  
Vera Moniz-Pereira ◽  
Silvia Cabral ◽  
Filomena Carnide ◽  
António P. Veloso

The purpose of this research was to study the sensitivity of lower limb joint kinematics and kinetics, calculated during different functional tasks (walking, stair descent and stair ascent) in a sample of older adults, to different pose estimation algorithms and models’ joint constraints. Three models were developed and optimized differently: in one model, each segment had 6 degrees of freedom (segment optimization, SO), while in the other two, global optimization (GO) was used, with different joint constraints: (1) GO, allowing all joint rotations; (2) GOR, allowing three rotations at the hip, one at the knee (flexion/extension) and two at the ankle (dorsi/plantar flexion and eversion/inversion). The results showed that joint angles are more sensitive to the model’s constraints than joint moments and, the more restrictive the model, the higher the differences between models, especially for the frontal and transverse planes (max. RMS difference during gait: 11.7 degrees (64%) vs 0.12 N·m/kg (35.4%). In addition, except for knee abduction/adduction angle, differences between SO and GO models were relatively low. Since GO avoids the nonanatomical dislocations sometimes observed in SO, choosing this model seems to be reasonable for future studies with a similar sample and study design.


2021 ◽  
Vol 3 ◽  
Author(s):  
Paige E. Rice ◽  
Kiisa Nishikawa ◽  
Sophia Nimphius

The purpose of this study was to investigate the effect of a 12-week ankle-specific block progression training program on saut de chat leaping performance [leap height, peak power (PP), joint kinetics and kinematics], maximal voluntary isometric plantar flexion (MVIP) strength, and Achilles tendon (AT) stiffness. Dancers (training group n = 7, control group n = 7) performed MVIP at plantarflexed (10◦) and neutral ankle positions (0◦) followed by ramping isometric contractions equipped with ultrasound to assess strength and AT stiffness, respectively. Dancers also performed saut de chat leaps surrounded by 3-D motion capture atop force platforms to determine center of mass and joint kinematics and kinetics. The training group then followed a 12-week ankle-focused program including isometric, dynamic constant external resistance, accentuated eccentric loading, and plyometric training modalities, while the control group continued dancing normally. We found that the training group's saut de chat ankle PP (59.8%), braking ankle stiffness (69.6%), center of mass PP (11.4%), and leap height (12.1%) significantly increased following training. We further found that the training group's MVIP significantly increased at 10◦ (17.0%) and 0◦ (12.2%) along with AT stiffness (29.6%), while aesthetic leaping measures were unchanged (peak split angle, mean trunk angle, trunk angle range). Ankle-specific block progression training appears to benefit saut de chat leaping performance, PP output, ankle-joint kinetics, maximal strength, and AT stiffness, while not affecting kinematic aesthetic measures. We speculate that the combined training blocks elicited physiological changes and enhanced neuromuscular synchronization for increased saut de chat leaping performance in this cohort of dancers.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yiyang Chen ◽  
Jing Xian Li ◽  
Youlian Hong ◽  
Lin Wang

This study aims to compare the insole load of three maximum-effort cutting tasks in basketball. Sixteen male basketball players were recruited to participate in the study. The Pedar Mobile system was used to record the insole plantar load distribution during three cutting tasks (45° cutting, 90° cutting, and sideward cutting). The peak pressures (PP) and maximum force (MF) at the total foot and at each foot mask were used in data analysis. ANOVA with repeated measures was employed to investigate the differences in the measures among these cutting tasks. At the total foot, the highest MF value was showed when performing sideward cutting. At the heel, the highest PP and MF were found when performing 90° cutting. The PP and MF were lower when performing 90° cutting than when conducting 45° and sideward cuttings at the medial midfoot and the central forefoot. Furthermore, the MF value was lower when performing 45° cutting than when conducting sideward cutting at the medial midfoot and the central forefoot. These findings corroborate the fact that plantar loads differed during the three maximum-effort cutting maneuvers. Differences in the plantar loads for different cutting may be potential risks for overuse-related injuries to the lower extremities of basketball players.


2010 ◽  
Vol 19 (3) ◽  
pp. 301-314 ◽  
Author(s):  
Rodrigo R. Bini ◽  
Aline C. Tamborindeguy ◽  
Carlos B. Mota

Context:It is not clear how noncyclists control joint power and kinematics in different mechanical setups (saddle height, workload, and pedaling cadence). Joint mechanical work contribution and kinematics analysis could improve our comprehension of the coordinative pattern of noncyclists and provide evidence for bicycle setup to prevent injury.Objective:To compare joint mechanical work distribution and kinematics at different saddle heights, workloads, and pedaling cadences.Design:Quantitative experimental research based on repeated measures.Setting:Research laboratory.patients:9 healthy male participants 22 to 36 years old without competitive cycling experience.Intervention:Cycling on an ergometer in the following setups: 3 saddle heights (reference, 100% of trochanteric height; high, + 3 cm; and low, − 3 cm), 2 pedaling cadences (40 and 70 rpm), and 3 workloads (0, 5, and 10 N of braking force).Main Outcome Measures:Joint kinematics, joint mechanical work, and mechanical work contribution of the joints.Results:There was an increased contribution of the ankle joint (P = .04) to the total mechanical work with increasing saddle height (from low to high) and pedaling cadence (from 40 to 70 rpm, P < .01). Knee work contribution increased when saddle height was changed from high to low (P < .01). Ankle-, knee-, and hip-joint kinematics were affected by saddle height changes (P < .01).Conclusions:At the high saddle position it could be inferred that the ankle joint compensated for the reduced knee-joint work contribution, which was probably effective for minimizing soft-tissue damage in the knee joint (eg, anterior cruciate ligament and patellofemoral cartilage). The increase in ankle work contribution and changes in joint kinematics associated with changes in pedaling cadence have been suggested to indicate poor pedaling-movement skill.


2021 ◽  
Vol 10 (3) ◽  
pp. 522-531
Author(s):  
Mohammad Baghbani ◽  
◽  
Mohammadtaghi Amiri-Khorasani ◽  
Abdolhamid Daneshjoo ◽  
◽  
...  

Background and Aims: Landing is a typical sports motion that can create impact force 2-12 times of body weight, and finally, it’s one of the main reasons for non-contact injuries in ankle ligaments. Specialized. The usual effects of Kinesio tape include increasing proprioception, health direction of joints, reducing pain, and raising pressure on nervous tissue. The study aimed to investigate the effect of Kinesio taping on ankle joint kinematics during landing on stiff and soft surfaces in ankle sprain and healthy persons. Methods: The method of the present study was quasi-experimental with a two-group design in control groups (without ankle sprain) and experimental (with an ankle sprain). A total of 30 male students of the Shahid Bahonar University of Kerman were purposefully and accessibly selected and divided into two groups with (15 students) and without ankle sprains (15 students). Then, they performed both landing operations on stable and unstable surfaces, with and without Kinesio tape. Maximum dorsi and plantar flexion, supination, pronation and maximum ankle angular velocity parameters were recorded by a three-dimensional motion analysis system. Statistical analysis was performed using independent t-test and repeated measures analysis of variance at the significant level of 0.05. Results: There was no significant reduction in plantar flexion of the ankle in healthy and twisted individuals while landing on stable and unstable surfaces with and without Kinesio tape (P≤0.07), but there was a significant reduction in the dorsiflexion in both groups(P≤0.001). On the other hand, there was no significant decrease in pronation (P≤0.66), but there was a significant decrease in foot supination (P≤0.001). Conclusion: Generally, Kinesio tape in recovery ankle movement is offered to persons for ankle sprain. Thus recommendation landing exercises fare with more flexion angle and less knee joint valgus and more dorsiflexion angle at ankle joint and preferable on the unstable surfaces.


Sign in / Sign up

Export Citation Format

Share Document