A Randomized Controlled Pilot Study to Investigate the Effect of Whole-Body Vibration on Lower-Extremity Fatigue

2017 ◽  
Vol 26 (5) ◽  
pp. 339-346 ◽  
Author(s):  
Noureddin Nakhostin Ansari ◽  
Soofia Naghdi ◽  
Hadi Karimi-Zarchi ◽  
Zahra Fakhari ◽  
Scott Hasson

Context:Whole-body vibration (WBV) is a type of weight-bearing exercise used in the field of sport and rehabilitation. There is no study on the effects of WBV on muscle recovery after a fatiguing activity.Objective:To determine the effects of a single WBV session on lower-extremity fatigue.Design:Randomized controlled pilot study.Setting:University Physiotherapy Clinic.Subjects:A total of 13 healthy young men volunteered to participate in this study. Subjects were randomly assigned into the WBV group (n = 7, mean age: 21 y) or control group (CG; n = 6, mean age: 20 y).Intervention:Subjects in the WBV group participated in a single-session WBV (30 Hz, amplitude 4 mm, 2 min) after lower-extremity fatigue.Main Outcome Measures:Peak force of quadriceps muscle, single leg hop test, and Y-test were measured before inducing muscle fatigue (T0), immediately after completing the fatigue protocol (T1), after WBV (T2), and 15 min following the application of WBV (T3). The same method was applied in the CG while the WBV machine was turned off.Results:Repeated-measure ANOVA revealed no significant differences between groups in any of the outcomes.Conclusions:The findings indicated that WBV was not effective in the recovery of lower-extremity fatigue in healthy young men.

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chia-Ming Chang ◽  
Chon-Haw Tsai ◽  
Ming-Kuei Lu ◽  
Hsin-Chun Tseng ◽  
Grace Lu ◽  
...  

Abstract Background Whole-body vibration (WBV) training can provoke reactive muscle response and thus exert beneficial effects in various neurological patients. This study aimed to investigate the muscles activation and acceleration transmissibility of the lower extremity to try to understand the neuromuscular control in the Parkinson’s disease (PD) patients under different conditions of the WBV training, including position and frequency. Methods Sixteen PD patients and sixteen controls were enrolled. Each of them would receive two WBV training sessions with 3 and 20 Hz mechanical vibration in separated days. In each session, they were asked to stand on the WBV machine with straight and then bended knee joint positions, while the vibration stimulation was delivered or not. The electromyographic (EMG) signals and the segmental acceleration from the lower extremity were recorded and processed. The amplitude, co-contraction indexes (CCI), and normalized median frequency slope (NMFS) from the EMG signals, and the acceleration transmissibility were calculated. Results The results showed larger rectus femoris (RF) amplitudes under 3 Hz vibration than those in 20 Hz and no vibration conditions; larger tibialis anterior (TA) in 20 Hz than in no vibration; larger gastrocnemius (GAS) in 20 Hz than in 3 Hz and no vibration. These results indicated that different vibration frequencies mainly induced reactive responses in different muscles, by showing higher activation of the knee extensors in 3 Hz and of the lower leg muscles in 20 Hz condition, respectively. Comparing between groups, the PD patients reacted to the WBV stimulation by showing larger muscle activations in hamstring (HAM), TA and GAS, and smaller CCI in thigh than those in the controls. In bended knee, it demonstrated a higher RF amplitude and a steeper NMFS but smaller HAM activations than in straight knee position. The higher acceleration transmissibility was found in the control group, in the straight knee position and in the 3 Hz vibration conditions. Conclusion The PD patients demonstrated altered neuromuscular control compared with the controls in responding to the WBV stimulations, with generally higher EMG amplitude of lower extremity muscles. For designing WBV strengthening protocol in the PD population, the 3 Hz with straight or flexed knee protocol was recommended to recruit more thigh muscles; the bended knee position with 20 Hz vibration was for the shank muscles.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kuan-yi Li ◽  
Yu-ju Cho ◽  
Rou-shayn Chen

Introduction. Previous studies have shown that whole-body vibration (WBV) may have a potential impact on gait and balance in individuals with Parkinson’s disease (PD). However, this body of work has proven inconclusive due to the diverse disease progression and broad age range associated with PD. The effects of WBV on proprioception, a sense frequently affected by PD, has rarely been studied. Objective. To investigate the short-term effect of WBV on proprioception and motor function for individual with moderate PD. Design. A single-blind randomized controlled trial. Setting. A hospital and a laboratory. Participants. 32 participants with moderate PD were recruited and randomly assigned into either the WBV or conventional therapy groups. Interventions. For the WBV group, each treatment session included five, one-minute bouts of whole-body vibration paired with one-minute rest (frequency: 6 Hz; amplitude: 3 mm). Each conventional therapy participant received balance and mobility training for 10 minutes. Main Outcome Measures. Outcome measures included proprioceptive sensitivity of the upper limb, position sense of the knee joint, Unified Parkinson’s disease rating scale : motor section (UPDRS-motor), functional reach test (FRT), and the timed up and go test (TUG). Results. No statistically significant difference was found between groups. However, both groups showed a significant improvement in motor function after treatment, including UPDRS-motor ( P = 0.04 ), less affected side of FRT ( P = 0.019 ), and TUG ( P = 0.006 ). Conclusions. Although the effect of WBV was not superior to the conventional therapy, it provided a passive and safe clinical intervention as an alternative treatment, especially for individuals with motor impairment or poor balance function.


Author(s):  
José Antonio Mingorance ◽  
Pedro Montoya ◽  
José García Vivas Miranda ◽  
Inmaculada Riquelme

Whole body vibration has been proven to improve the health status of patients with fibromyalgia, providing an activation of the neuromuscular spindles, which are responsible for muscle contraction. The present study aimed to compare the effectiveness of two types of whole body vibrating platforms (vertical and rotational) during a 12-week training program. Sixty fibromyalgia patients (90% were women) were randomly assigned to one of the following groups: group A (n = 20), who performed the vibration training with a vertical platform; group B (n = 20), who did rotational platform training; or a control group C (n = 20), who did not do any training. Sensitivity measures (pressure pain and vibration thresholds), quality of life (Quality of Life Index), motor function tasks (Berg Scale, six-minute walking test, isometric back muscle strength), and static and dynamic balance (Romberg test and gait analysis) were assessed before, immediately after, and three months after the therapy program. Although both types of vibration appeared to have beneficial effects with respect to the control group, the training was more effective with the rotational than with vertical platform in some parameters, such as vibration thresholds (p < 0.001), motor function tasks (p < 0.001), mediolateral sway (p < 0.001), and gait speed (p < 0.05). Nevertheless, improvements disappeared in the follow-up in both types of vibration. Our study points out greater benefits with the use of rotational rather than vertical whole body vibration. The use of the rotational modality is recommended in the standard therapy program for patients with fibromyalgia. Due to the fact that the positive effects of both types of vibration disappeared during the follow-up, continuous or intermittent use is recommended.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Rania G. Hegazy ◽  
Amr Almaz Abdel-aziem ◽  
Eman I. El Hadidy ◽  
Yosra M. Ali

Abstract Background Hemiplegic cerebral palsy (CP) enormously affects the quadriceps and hamstring muscles. It causes weakness in the affected lower-extremity muscles in addition to muscle imbalance and inadequate power production, especially in the ankle plantar-flexor and knee extensor muscles. It also causes anomalous delayed myoelectrical action of the medial hamstring. A whole-body vibration (WBV) exercise can diminish muscle spasticity and improve walking speed, muscle strength, and gross motor function without causing unfavorable impacts in adults suffering from CP. Thus, the aim of this study is to investigate the impacts of WBV training associated with conventional physical therapy on the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP. Results The post-intervention values of the quadriceps and hamstring muscle force, endurance, and power were significantly higher than the pre-intervention values for both groups (p = 0.001). The post-intervention values of the study group were significantly higher than the control group (quadriceps force, p = 0.015; hamstring force, p = 0.030; endurance, p = 0.025; power, p = 0.014). Conclusion The 8 weeks of WBV training that was added to traditional physical therapy was more successful in improving the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP when compared to traditional physical therapy alone.


Sign in / Sign up

Export Citation Format

Share Document