Quadriceps Concentric EMG Activity Is Greater than Eccentric EMG Activity during the Lateral Step-Up Exercise

2000 ◽  
Vol 9 (2) ◽  
pp. 124-134 ◽  
Author(s):  
Angie Selseth ◽  
Marilyn Dayton ◽  
Mitchell L. Cordova ◽  
Christopher D. Ingersoll ◽  
Mark A. Merrick

Purpose:To analyze vastus medialis obliquus (VMO) and vastus lateralis (VL) muscle activity during the concentric and eccentric phases of a lateral step-up exercise.Design:Repeated-measures. Dependent variable: the integrated electromyogram measured as a percentage of the maximal voluntary isometric contraction of the VMO and VL muscles. Independent variable: muscle contraction with 2 levels (concentric and eccentric).Subjects:Twenty-three volunteers with no previous history of knee surgery or anterior knee pain.Methods:Surface electrodes were positioned over the VMO and VL, and electromyographic data were collected during the exercise.Results:The 2 muscle phases of contraction were different when both dependent variables were considered simultaneously (F2,7= 33.2,P< .001). Concentric contractions produced greater muscle activity for VL (P< .05) and VMO (P< .05).Conclusions:Because concentric contractions produce greater activity than eccentric contractions do during the lateral step-up exercise, they provide a stronger stimulus for muscle activation, which might result in greater muscle strength gains.

2013 ◽  
Vol 22 (4) ◽  
pp. 272-278 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The dominant and nondominant legs respond asymmetrically during landing tasks, and this difference may occur during an inversion perturbation and provide insight into the role of ankle-evertor and -invertor muscle activity.Objective:To determine if there is a difference in the ratio of evertor to invertor activity between the dominant and nondominant legs and outer-sole conditions when the ankle is forced into inversion.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:An outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint after landing from a 27-cm step-down task. Participants performed 10 fulcrum trials on both the dominant and nondominant leg.Main Outcome Measures:The ratio of evertor to invertor muscle activity 200 ms before and 200 ms after the inversion perturbation was measured using electromyography. This ratio was the dependent variable. Independent variables included outer-sole condition (fulcrum, flat), leg (dominant, nondominant), and time (prelanding, postlanding). The data were analyzed with separate 2-way repeated-measures ANOVA, 1 for the prelanding ratios and 1 for the postlanding ratios.Results:For the postlanding ratios, the fulcrum outer sole had a significantly greater (P < .05) ratio than the flat outer sole, and the nondominant leg had a significantly greater (P < .05) ratio than the dominant leg.Conclusions:These results indicate that a greater evertor response is produced when the ankle is forced into inversion, and a greater response is produced for the nondominant leg, which may function better during a postural-stabilizing task than the dominant leg.


2010 ◽  
Vol 90 (4) ◽  
pp. 538-549 ◽  
Author(s):  
Lars L. Andersen ◽  
Christoffer H. Andersen ◽  
Ole S. Mortensen ◽  
Otto M. Poulsen ◽  
Inger Birthe T. Bjørnlund ◽  
...  

BackgroundHigh-intensity resistance training plays an essential role in the prevention and rehabilitation of musculoskeletal injuries and disorders. Although resistance exercises with heavy weights yield high levels of muscle activation, the efficacy of more user-friendly forms of exercise needs to be examined.ObjectiveThe aim of this study was to investigate muscle activation and perceived loading during upper-extremity resistance exercises with dumbbells compared with elastic tubing.DesignA single-group, repeated-measures study design was used.SettingExercise evaluation was conducted in a laboratory setting.ParticipantsSixteen female workers (aged 26–55 years) without serious musculoskeletal diseases and with a mean neck and shoulder pain intensity of 7.8 on a 100-mm visual analog scale participated in the study.MeasurementsElectromyographic (EMG) activity was measured in 5 selected muscles during the exercises of lateral raise, wrist extension, and shoulder external rotation during graded loadings with dumbbells (2–7.5 kg) and elastic tubing (Thera-Band, red to silver resistance). The order of exercises and loadings was randomized for each individual. Electromyographic amplitude was normalized to the absolute maximum EMG amplitude obtained during maximal voluntary isometric contraction and exercise testing. Immediately after each set of exercise, the Borg CR10 scale was used to rate perceived loading during the exercise.ResultsResistance exercise with dumbbells as well as elastic tubing showed increasing EMG amplitude and perceived loading with increasing resistance. At the individually maximal level of resistance for each exercise—defined as the 3 repetitions maximum—normalized EMG activity of the prime muscles was not significantly different between dumbbells (59%–87%) and elastic tubing (64%–86%). Perceived loading was moderately to very strongly related to normalized EMG activity (r=.59–.92).LimitationsThe results of this study apply only for exercises performed in a controlled manner (ie, without sudden jerks or high acceleration).ConclusionsComparably high levels of muscle activation were obtained during resistance exercises with dumbbells and elastic tubing, indicating that therapists can choose either type in clinical practice. The Borg CR10 can be a useful aid in estimating intensity of individual rehabilitation protocols.


2021 ◽  
Vol 30 (3) ◽  
pp. 387-395
Author(s):  
Soojin Kim ◽  
Joo-Hyun Lee ◽  
Jihye Heo ◽  
Eunwook Chang

PURPOSE: The purpose of this study was to compare thigh muscle activities and muscle co-activation when performing squats, wall squats, and Spanish squats on stable and unstable ground.METHODS: Twenty-two healthy male subjects (age: 22.50±2.70 years, height: 178.72±6.04 cm, mass: 76.50±6.80 kg, body mass index: 24.00±2.10 kg/m2, and Godin activity questionnaire: 56.30±24.10) voluntarily participated in the study. All of the participants performed three different squat exercises on the floor and the BOSU ball with an electromyograph attached to each participant’s quadriceps (rectus femoris, RF; vastus lateralis, VL; and vastus medialis, VM) and hamstrings (biceps femoris, BF; semitendinosus, ST; and semimembranosus, SM). Repeated measures of analysis of variance were utilized to compare muscle activity during the three squats exercises by floor type.RESULTS: RF (p<.001, η2=.689), VL (p<.001, η2=.622), and VM (p=.002, η2=.375) showed significant differences between exercises. Spanish squats yielded greater BF activity than did wall squats (p=.018, η2=.269). ST yielded greater muscle activity with the BOSU ball than on the floor (p=.018, η2=.269). Finally, there was a significant ground exercise interaction effect on the co-activation, showing greater muscle co-activation with Spanish squats on the BOSU ball compared to squats, squats on the BOSU ball, and wall squat on the BOSU ball.CONCLUSIONS: The findings of this study indicate that Spanish squats could be an effective exercise option for the facilitation of RF, VL, VM, and BF muscle activation. In particular, performing Spanish squats on an unstable surface could be useful for patients who need to improve their quadriceps muscle activation.


2001 ◽  
Vol 10 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Jennifer Erin Earl ◽  
Jay Hertel

Objective:To identify integrated EMG (I-EMG) activity of 6 lower-extremity muscles during the 8 Star Excursion Balance Tests (SEBTs).Design and Setting:Repeated measures, laboratory setting.Subjects:10 healthy young adults.Interventions:The SEBTs require the subject to balance on the stance leg and maximally reach with the contralateral foot along each of 8 lines extending from a common axis at 45° intervals.Measures:I-EMG activity of the vastus medialis obliquus (VMO), vastus lateralis (VL), medial hamstring (MH), biceps femoris (BF), anterior tibialis (AT), and gas-trocnemius.Results:Significant differences were found in all muscles (P < .05) except the gastrocnemius (P = .08). VMO and VL activity tended to be greatest with anteriorly directed excursions, whereas the MH and BF activity were greatest with posteriorly directed excursions. AT activity was lowest with the lateral excursion.Conclusions:Performance of the different SEBTs results in different lower-extremity muscle-activation patterns.


2007 ◽  
Vol 32 (6) ◽  
pp. 1156-1163 ◽  
Author(s):  
Tom J. Hazell ◽  
Jennifer M. Jakobi ◽  
Kenji A. Kenno

Whole-body vibration (WBV) training uses a vertically oscillating platform and reports suggest that this perturbation elicits reflexive muscle contractions that augment muscle activity and contribute to increased strength. No WBV study has measured both upper- and lower-body muscle activation. The purpose of this study was to determine the optimal WBV stimulus (frequency × amplitude) to increase electromyography (EMG) in upper- and lower-body muscles for three distinctive unloaded actions: isometric semi-squat, dynamic leg squats, and static and dynamic bilateral bicep curls. Surface EMG was measured for the vastus lateralis (VL), biceps femoris (BF), biceps brachii (BB), and triceps brachii (TB) in 10 recreationally active male university students (24.4 ± 2.0 years; mean ± SD) when WBV was administered at 2 and 4 mm and at 25, 30, 35, 40, and 45 Hz. EMG changes are reported as the difference between WBV and no WBV EMG root mean square expressed as a percentage of maximum voluntary exertion (%MVE). In static semi-squat, WBV increased muscle activity 2.9%–6.7% in the VL and 0.8%–1.2% in the BF. During dynamic squatting, WBV increased muscle activity in the VL by 3.7%–8.7% and in the BF by 0.4%–2.0%. In a static biceps curl, WBV had no effect on BB EMG, but did increase TB activity 0.3%–0.7%. During dynamic biceps curls, WBV increased BB EMG activity by 0.6%–0.8% and TB activity by 0.2%–1.0%. The higher WBV amplitude (4 mm) and frequencies (35, 40, 45 Hz) resulted in the greatest increases in EMG activity.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 202-213
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Alana J. Turner ◽  
Reuben F. Burch V ◽  
Adam C. Knight ◽  
...  

Background: Occupational footwear and a prolonged duration of walking have been previously reported to play a role in maintaining postural stability. The purpose of this paper was to analyze the impact of three types of occupational footwear: the steel-toed work boot (ST), the tactical work boot (TB), and the low-top work shoe (LT) on previously unreported lower extremity muscle activity during postural stability tasks. Methods: Electromyography (EMG) muscle activity was measured from four lower extremity muscles (vastus medialis (VM), medial hamstrings (MH), tibialis anterior (TA), and medial gastrocnemius (MG) during maximal voluntary isometric contractions (MVIC) and during a sensory organization test (SOT) every 30 min over a 4 h simulated workload while wearing ST, TB, and LT footwear. The mean MVIC and the mean and percentage MVIC during each SOT condition from each muscle was analyzed individually using a repeated measures ANOVA at an alpha level of 0.05. Results: Significant differences (p < 0.05) were found for maximal exertions, but this was limited to only the time main effect. No significant differences existed for EMG measures during the SOT. Conclusion: The findings suggest that occupational footwear type does not influence lower extremity muscle activity during both MVIC and SOT. Significantly lower muscle activity during maximal exertions over the course of the 4 h workload was evident, which can be attributed to localized muscular fatigue, but this was not sufficient to impact muscle activity during postural stability tasks.


2006 ◽  
Vol 100 (6) ◽  
pp. 1757-1764 ◽  
Author(s):  
J. M. Kalmar ◽  
E. Cafarelli

After fatigue, motor evoked potentials (MEP) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials elicited by stimulation of the corticospinal tract are depressed. These reductions in corticomotor excitability and corticospinal transmission are accompanied by voluntary activation failure, but this may not reflect a causal relationship. Our purpose was to determine whether a decline in central excitability contributes to central fatigue. We hypothesized that, if central excitability limits voluntary activation, then a caffeine-induced increase in central excitability should offset voluntary activation failure. In this repeated-measures study, eight men each attended two sessions. Baseline measures of knee extension torque, maximal voluntary activation, peripheral transmission, contractile properties, and central excitability were made before administration of caffeine (6 mg/kg) or placebo. The amplitude of vastus lateralis MEPs elicited during minimal muscle activation provided a measure of central excitability. After a 1-h rest, baseline measures were repeated before, during, and after a fatigue protocol that ended when maximal voluntary torque declined by 35% (Tlim). Increased prefatigue MEP amplitude ( P = 0.055) and cortically evoked twitch ( P < 0.05) in the caffeine trial indicate that the drug increased central excitability. In the caffeine trial, increased MEP amplitude was correlated with time to task failure ( r = 0.74, P < 0.05). Caffeine potentiated the MEP early in the fatigue protocol ( P < 0.05) and offset the 40% decline in placebo MEP ( P < 0.05) at Tlim. However, this was not associated with enhanced maximal voluntary activation during fatigue or recovery, demonstrating that voluntary activation is not limited by central excitability.


2003 ◽  
Vol 19 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Mark D. Grabiner ◽  
Tammy M. Owings

For this study it was hypothesized that when participants intended to perform a maximum voluntary concentric (or eccentric) contraction but had an eccentric (or concentric) contraction imposed upon them, the initial EMG measured during the isometric phase preceding the onset of the dynamometer motion would reflect the intended contraction condition. The surface EMG of the vastus lateralis muscle was measured in 24 participants performing isokinetic concentric and eccentric maximum voluntary knee extensor contractions. The contractions were initiated from rest and from the same knee flexion angle and required the same level of external force to trigger the onset of dynamometer motion. Vastus lateralis EMG were quantified during the isometric phase preceding the onset of the dynamometer motion. When participants intended to perform a concentric contraction but had an eccentric contraction imposed upon them, the initial EMG resembled that of a concentric contraction. When they intended to perform an eccentric contraction but had a concentric contraction imposed upon them, the initial EMG resembled that of an eccentric contraction. Overall, the difference between concentric and eccentric contractions observed during the period of theinitialmuscle activation implies that descending signals include information that distinguishes between eccentric and concentric contractions.


2014 ◽  
Vol 30 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Alison C. McDonald ◽  
Elora C. Brenneman ◽  
Alan C. Cudlip ◽  
Clark R. Dickerson

As the modern workplace is dominated by submaximal repetitive tasks, knowledge of the effect of task location is important to ensure workers are unexposed to potentially injurious demands imposed by repetitive work in awkward or sustained postures. The purpose of this investigation was to develop a three-dimensional spatial map of the muscle activity for the right upper extremity during laterally directed submaximal force exertions. Electromyographic (EMG) activity was recorded from fourteen muscles surrounding the shoulder complex as the participants exerted 40N of force in two directions (leftward, rightward) at 70 defined locations. Hand position in both push directions strongly influenced total and certain individual muscle demands as identified by repeated measures analysis of variance (P< .001). During rightward exertions individual muscle activation varied from 1 to 21% MVE and during leftward exertions it varied from 1 to 27% MVE with hand location. Continuous prediction equations for muscular demands based on three-dimensional spatial parameters were created with explained variance ranging from 25 to 73%. The study provides novel information for evaluating existing and proactive workplace designs, and may help identify preferred geometric placements of lateral exertions in occupational settings to lower muscular demands, potentially mitigating fatigue and associated musculoskeletal risks.


Cephalalgia ◽  
1999 ◽  
Vol 19 (25_suppl) ◽  
pp. 1-8 ◽  
Author(s):  
RH Westgaard

In this review, the evidence for trapezius muscle activity as a releasing factor for shoulder and neck pain is considered, mainly on the basis of studies in our laboratory. Two lines of evidence are produced, (i) vocational studies in an occupational setting, where muscle activity pattern is recorded by surface EMG and a clinical examination of the shoulder region of the subjects performed; and (ii) laboratory studies where muscle activity patterns and pain development are recorded in an experimental situation with mental stress and minimal physical activity. The vocational studies demonstrate pain development in the shoulder and neck despite very low muscle activity recorded, making it very difficult to assume muscular involvement for all cases with such complaints. However, the hypothesis of pain development through overexertion of a subpopulation of low-threshold motor units also makes it difficult to draw a firm negative conclusion. The laboratory experiments, on the other hand, show that trapezius activity patterns in response to stress have many features that would be expected if muscle activation induces pain symptoms. It is further noted that the trapezius is the only muscle with activity patterns that show these features. Possibly, we observe the effects of parallel physiological phenomena, e.g., a systemic autonomic activation that induces pain symptoms and also facilitates the motor response of some muscles. Evidence of autonomic activation of trapezius is presented by the observation of low-level, rhythmic EMG activity during sleep. However, this is not firm evidence for the above hypothesis, which at present best serves as a basis for further experimentation.


Sign in / Sign up

Export Citation Format

Share Document