Difference in Ratio of Evertor to Invertor Activity Between the Dominant and Nondominant Legs During Simulated Lateral Ankle Sprain

2013 ◽  
Vol 22 (4) ◽  
pp. 272-278 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The dominant and nondominant legs respond asymmetrically during landing tasks, and this difference may occur during an inversion perturbation and provide insight into the role of ankle-evertor and -invertor muscle activity.Objective:To determine if there is a difference in the ratio of evertor to invertor activity between the dominant and nondominant legs and outer-sole conditions when the ankle is forced into inversion.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:An outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint after landing from a 27-cm step-down task. Participants performed 10 fulcrum trials on both the dominant and nondominant leg.Main Outcome Measures:The ratio of evertor to invertor muscle activity 200 ms before and 200 ms after the inversion perturbation was measured using electromyography. This ratio was the dependent variable. Independent variables included outer-sole condition (fulcrum, flat), leg (dominant, nondominant), and time (prelanding, postlanding). The data were analyzed with separate 2-way repeated-measures ANOVA, 1 for the prelanding ratios and 1 for the postlanding ratios.Results:For the postlanding ratios, the fulcrum outer sole had a significantly greater (P < .05) ratio than the flat outer sole, and the nondominant leg had a significantly greater (P < .05) ratio than the dominant leg.Conclusions:These results indicate that a greater evertor response is produced when the ankle is forced into inversion, and a greater response is produced for the nondominant leg, which may function better during a postural-stabilizing task than the dominant leg.

2011 ◽  
Vol 20 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The latency of the peroneus longus in response to an inversion perturbation is a key component in the prevention of lateral ankle sprains. In addition, the dominant ankle is sprained more frequently than the nondominant ankle, but the cause of this has not been examined.Objective:To investigate the combination of these 2 research-supported statements, the purpose of this study was to use an inversion perturbation that replicates the mechanism of a lateral ankle sprain to determine whether there is a difference in the latency of the peroneus longus between the dominant and nondominant legs.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:Outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint on landing from a 27-cm step-down task. Participants performed 10 trials on both the dominant and nondominant leg.Main Outcome Measures:2 latency measures of the peroneus longus of both the dominant and nondominant leg, calculated as the amount of time from the moment of touchdown of the fulcrum until muscle activity exceeded 5 and 10 SD above baseline muscle activity.Results:The latency of the peroneus longus of the nondominant leg was significantly shorter when using both 5 SD (F1,14 = 9.34, P = .009, d = .895) and 10 SD (F1,14 = 18.56, P = .001, d = .920) above baseline muscle activity.Conclusions:This difference in latency may be a result of the different demands placed on the dominant and nondominant legs during activity and may predispose the dominant ankle to a greater number of ankle sprains than the nondominant ankle.


2015 ◽  
Vol 24 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Shirleeah D. Fayson ◽  
Alan R. Needle ◽  
Thomas W. Kaminski

Context:The use of Kinesio Tape among health care professional has grown recently in efforts to efficiently prevent and treat joint injuries. However, limited evidence exists regarding the efficacy of this technique in enhancing joint stability and neuromuscular control.Objective:To determine how Kinesio Tape application to the ankle joint alters forces and muscle activity during a drop-jump maneuver.Design:Single-group pretest– posttest.Setting:University laboratory.Subjects:22 healthy adults with no previous history of ankle injury.Interventions:Participants were instrumented with electromyography on the lower-leg muscles as they jumped from a 35-cm platform onto force plates. Test trials were performed without tape (BL), immediately after application of Kinesio Tape to the ankle (KT-I), and after 24 h of continued use (KT-24).Main Outcome Measures:Peak ground-reaction forces (GRFs) and time to peak GRF were compared across taping conditions, and the timing and amplitude of muscle activity from the tibialis anterior, peroneus longus, and lateral gastrocnemius were compared across taping conditions.Results:No significant differences in amplitude or timing of GRFs were observed (P > .05). However, muscle activity was observed to decrease from BL to KT-I in the tibialis anterior (P = .027) and from BL to KT-24 in the PL (P = .022).Conclusions:The data suggest that Kinesio Tape decreases muscle activity in the ankle during a drop-jump maneuver, although no changes in GRFs were observed. This is contrary to the proposed mechanisms of Kinesio Tape. Further research might investigate how this affects participants with a history of injury.


2010 ◽  
Vol 19 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Lacey Nordsiden ◽  
Bonnie L. Van Lunen ◽  
Martha L. Walker ◽  
Nelson Cortes ◽  
Maria Pasquale ◽  
...  

Context:Many styles of foot pads are commonly applied to reduce immediate pain and pressure under the foot.Objective:To examine the effect of 3 different foot pads on peak plantar pressure (PPP) and mean plantar pressure (MPP) under the first metatarsophalangeal joint (MTPJ) during slow running.Design:A 4 (pad) × 4 (mask) repeated-measures design.Setting:University athletic training clinic and fitness facility.Participants:20 physically active participants, 12 men (19.7 ± 1.3 y, 181.5 ± 6.3 cm, 83.6 ± 12.3 kg) and 8 women (20.8 ± 1.5 y, 172.7 ± 11.2 cm, 69.9 ± 14.2 kg) with navicular drop greater than or equal to 10 mm, no history of surgery to the lower extremity, and no history of pain or injury to the first MTPJ in the past 6 months.Interventions:PPP and MPP were evaluated under 4 areas of the foot: the rear foot, lateral forefoot, medial forefoot, and first MTPJ. Four pad conditions (no pad, metatarsal dome, U-shaped pad, and donut-shaped pad) were evaluated during slow running. All measurements were taken on a standardized treadmill using the Pedar in-shoe pressure-measurement system.Main Outcome Measures:PPP and MPP in 4 designated foot masks during slow running.Results:The metatarsal dome produced significant decreases in MPP (163.07 ± 49.46) and PPP (228.73 ± 63.41) when compared with no pad (P < .001). The U-shaped pad significantly decreased MPP (168.68 ± 50.26) when compared with no pad (P < .001). The donut-shaped pad increased PPP compared with no pad (P < .001).Conclusions:The metatarsal dome was most effective in reducing both peak and mean plantar pressure. Other factors such as pad comfort, type of activity, and material availability must also be considered. Further research should be conducted on the applicability to other foot types and symptomatic subjects.


2000 ◽  
Vol 9 (2) ◽  
pp. 124-134 ◽  
Author(s):  
Angie Selseth ◽  
Marilyn Dayton ◽  
Mitchell L. Cordova ◽  
Christopher D. Ingersoll ◽  
Mark A. Merrick

Purpose:To analyze vastus medialis obliquus (VMO) and vastus lateralis (VL) muscle activity during the concentric and eccentric phases of a lateral step-up exercise.Design:Repeated-measures. Dependent variable: the integrated electromyogram measured as a percentage of the maximal voluntary isometric contraction of the VMO and VL muscles. Independent variable: muscle contraction with 2 levels (concentric and eccentric).Subjects:Twenty-three volunteers with no previous history of knee surgery or anterior knee pain.Methods:Surface electrodes were positioned over the VMO and VL, and electromyographic data were collected during the exercise.Results:The 2 muscle phases of contraction were different when both dependent variables were considered simultaneously (F2,7= 33.2,P< .001). Concentric contractions produced greater muscle activity for VL (P< .05) and VMO (P< .05).Conclusions:Because concentric contractions produce greater activity than eccentric contractions do during the lateral step-up exercise, they provide a stronger stimulus for muscle activation, which might result in greater muscle strength gains.


Author(s):  
Adel M. Madkhali ◽  
Shibili Nuhmani

Abstract Background Lateral ankle sprain is one of the most common injuries in competitive sports. Previous studies which investigated muscle strength and proprioception (joint position sense) focused on subjects who sustained ankle sprain with instability. It is also important to investigate strength deficits and proprioception in subjects with a history of ankle sprain without instability. Therefore the aim of the study is to investigate proprioception and muscle strength deficits in athletes with lateral ankle sprain. Methods Twenty-four male athletes with a history of lateral ankle sprain and 24 age-matched controls (mean age of 22.42±4.13 years, mean height of 173±5.73 cm, and mean weight of 71.20±7.55 Kg) participated in this cross-sectional study. Peak torque and peak torque ratio at speeds of 30 and 120°/s for concentric and eccentric ankle inversion/eversion were evaluated using an isokinetic dynamometer. The joint position sense of the ankle joint was evaluated using an active angle reproduction test. Result Peak torque produced was significantly less in subjects with history of ankle sprain in concentric inversion 30°/s(t(47)=4.11; p=0.000, Cohen’s d=1.29), concentric inversion 120°/s (t(47)=3.01; p=0.006, Cohen’s d=1.13), concentric eversion 30°/s (t(47)=3.85; p=0.001, Cohen’s d=1.24) and concentric eversion 120°/s (t(47)=3.15; p=0.005, Cohen’s d=1.09). At the same time there was no significant difference observed in eccentric eversion peak torque in both speed (eccentric eversion 30°/s p=0.079; eccentric eversion 120°/s p=0.867) between experimental and control group. No significant difference was found in the joint position sense in the maximal active inversion −5° position (p=0.312) and the 15° inversion position (P=0.386) between both group. Conclusion The study’s results reported a significantly less peak torque of invertors and evertors during concentric movements in athletes with history of ankle sprain. At the same time, no significant difference reported in the evertor/invertor peak torque ratio, and active joint position sense between the 2 groups.


2011 ◽  
Vol 20 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Rachel E. Brinkman ◽  
Todd A. Evans

2017 ◽  
Vol 26 (3) ◽  
pp. 260-268
Author(s):  
Patti Syvertson ◽  
Emily Dietz ◽  
Monica Matocha ◽  
Janet McMurray ◽  
Russell Baker ◽  
...  

Context:Achilles tendinopathy is relatively common in both the general and athletic populations. The current gold standard for the treatment of Achilles tendinopathy is eccentric exercise, which can be painful and time consuming. While there is limited research on indirect treatment approaches, it has been proposed that tendinopathy patients do respond to indirect approaches in fewer treatments without provoking pain.Objective:To determine the effectiveness of using a treatment-based-classification (TBC) algorithm as a strategy for classifying and treating patients diagnosed with Achilles tendinopathy.Participants:11 subjects (mean age 28.0 ±15.37 y) diagnosed with Achilles tendinopathy.Design:Case series.Setting:Participants were evaluated, diagnosed, and treated at multiple clinics.Main Outcome Measures:Numeric Rating Scale (NRS), Disablement in the Physically Active Scale (DPA Scale), Victorian Institute of Sport Assessment–Achilles (VISA-A), Global Rating of Change (GRC), and Nirschl Phase Rating Scale were recorded to establish baseline scores and evaluate participant progress.Results:A repeated-measures ANOVA was conducted to analyze NRS scores from initial exam to discharge and at 1-mo follow-up. Paired t tests were analyzed to determine the effectiveness of using a TBC algorithm from initial exam to discharge on the DPA Scale and VISA-A. Descriptive statistics were evaluated to determine outcomes as reported on the GRC.Conclusion:The results of this case series provide evidence that using a TBC algorithm can improve function while decreasing pain and disability in Achilles tendinopathy participants.


2011 ◽  
Vol 27 (4) ◽  
pp. 283-290 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

The purpose of this investigation was to determine the effect of different types of ankle sprains on the response latency of the peroneus longus and peroneus brevis to an inversion perturbation, as well as the time to complete the perturbation (time to maximum inversion). To create a forced inversion moment of the ankle, an outer sole with fulcrum was used to cause 25 degrees of inversion at the ankle upon landing from a 27 cm step-down task. Forty participants completed the study: 15 participants had no history of any ankle sprain, 15 participants had a history of a lateral ankle sprain, and 10 participants had a history of a high ankle sprain. There was not a significant difference between the injury groups for the latency measurements or the time to maximum inversion. These findings indicate that a previous lateral ankle sprain or high ankle sprain does not affect the latency of the peroneal muscles or the time to complete the inversion range of motion.


Sign in / Sign up

Export Citation Format

Share Document