scholarly journals Modeling Longitudinal Changes in Maximal-Intensity Exercise Performance in Young Male Rowing Athletes

2012 ◽  
Vol 24 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Pavle Mikulic ◽  
Tomislav Blazina ◽  
Alan M. Nevill ◽  
Goran Markovic

The purpose of the current study was to examine the effect of age and body size upon maximal-intensity exercise performance in young rowing athletes. Male participants n = 171) aged 12–18 years were assessed using an “all-out” 30-s rowing ergometer test, and reassessed after 12 months. The highest rate of performance development, which amounts to [mean(SD)] +34%(23%) and +32%(23%) for mean and maximal power output, respectively, is observed between the ages of 12 and 13, while this rate of development gradually declines as the athletes mature through adolescence. Performance increases with body size, and mass, stature and chronological age all proved to be significant (all p < .05) explanatory variables of mean power output, with respective exponents [mean(SE)] of 0.56(0.08), 1.84(0.30) and 0.07(0.01), and of maximal power output, with respective exponents of 0.54(0.09), 1.76(0.32) and 0.06(0.01). These findings may help coaches better understand the progression of rowing performance during adolescence.

2017 ◽  
Vol 124 (2) ◽  
pp. 329-350 ◽  
Author(s):  
Giovani S. Cunha ◽  
Sean P. Cumming ◽  
João Valente-dos-Santos ◽  
João P. Duarte ◽  
Gustavo Silva ◽  
...  

This study examined power output on jumping and sprinting tests in young soccer players of differing pubertal status, while controlling for body size with allometric scaling exponents. A total of 46 males aged 12–18 years (14.17 years) were divided into three groups: pre-pubescent ( n = 12), pubescent ( n = 22), and post-pubescent ( n = 12). Participants performed a series of tests, including the squat jump (SJ), countermovement jump (CMJ), and 10-meter and 30-meter sprint test protocols. The Post-PUB group was older ( F = 112.411, p < 0.001), more experienced in competitive soccer ( F = 8.055, p = 0.001), taller ( F = 28.940, p < 0.001), and heavier ( F = 20.618, p < 0.001), when compared to peers in the other groups. Mean differences in jumping and sprinting performances suggested a significant effect for pubertal status on performance in the 10-meter sprint (large effect size, F = 8.191, p < 0.001) and 30-meter sprint (large effect size, F = 8.093, p < 0.001) after allometric scaling. Power output derived from SJ (small effect size, F = 0.536, p = 0.001) and CMJ (small effect size, F = 1.058, p = 0.356) showed no significant differences across players of varying pubertal status. Biological maturation showed a large effect on maximal power output for sprints, but not for jumps, when the effect of body size was adjusted by statistically derived allometric exponents in young male soccer players.


Author(s):  
Hannes Gatterer ◽  
Marc Philippe ◽  
Hanno Fröhlich ◽  
Stefan Bachler ◽  
Florian Mosbach ◽  
...  

Many sport drinks contain a mixture of potential ergogenic substances. Recently, a new sport drink with 25 different ingredients was introduced to the market. Various athletes reported beneficial performance effects from the supplement, though without scientific evidence. The aim of this study was to investigate the effects of the sport drink on exercise performance. Nine sport students performed 3 test sessions including a cycle exercise tests to exhaustion, a leg strength test and a jump test. Each session was separated by 1 week. The first session was performed as a familiarization trial. In a random order, half of the participants performed the second session after consumption of the multi ingredient sport drink (MISD intake of 40g, 24 and 1h before each test) and half after placebo ingestion (same amount). During test session 3 the conditions were reversed (cross-over setting). Near infrared spectroscopy analyses were performed on the vastus lateralis during the MISD and placebo cycling test. The sport drink compared to placebo, improved maximal power output (7 watts, 95% CI 1.1-13.4), increased maximal lactate concentration (2.5 mmol/l, 95% CI 1.6-3.4), and power output at the individual threshold (Dmax) (6.1 watts, 95% CI 1.9-10.3). Power output at the 4 mmol/l threshold was reduced (9.0 watts, 95% CI -17.4 to -0.6) during the MISD trial. Additionally, the sport drink led to a steeper tissue oxygenation index decrease (TOI, slope: -0.0182±0.0084 vs. -0.0256±0.0073, p<0.005) during the test. Leg strength and jump ability was not affected by the supplement. The sport drink slightly increased power output during an incremental exercise test. Due to the broad range of substances in the supplement and their different effects, the factors involved in the performance enhancement are speculative. Data show that factors other than muscle oxygen extraction (represented by TOI) are involved in the improved maximal power output.


2019 ◽  
Vol 14 (5) ◽  
pp. 644-649 ◽  
Author(s):  
Martin J. Barwood ◽  
Joe Kupusarevic ◽  
Stuart Goodall

Purpose: Exercise performance is impaired in the heat, and a contributing factor to this decrement is thermal discomfort. Menthol spraying of skin is one means of alleviating thermal discomfort but has yet to be shown to be ergogenic using single-spray applications. The authors examined whether repeated menthol spraying could relieve thermal discomfort, reduce perception of exertion, and improve exercise performance in hot (35°C), dry (22% relative humidity) conditions, hypothesizing that it would. Methods: A total of 8 trained cyclists completed 2 separate conditions of fixed-intensity cycling (50% maximal power output) for 45 min before a test to exhaustion (TTE; 70% maximal power output) with 100 mL of menthol spray (0.20% menthol) or control spray applied to the torso after 20 and 40 min. Perceptual (thermal sensation, thermal comfort, and rating of perceived exertion) performance (TTE duration), thermal variables (skin temperature, rectal temperature, and cardiac frequency), and sweating were measured. Data were compared using analysis of variance to .05 alpha level. Results: Menthol spray improved thermal sensation (cold sensation cf warm/hot after first spraying; P = .008) but only descriptively altered thermal comfort (comfortable cf uncomfortable; P = .173). Sweat production (994 [380] mL cf 1180 [380] mL; P = .020) and sweat rate (827 [327] mL·h−1 cf 941 [319] mL·h−1; P = .048) lowered. TTE performance improved (4.6 [1.74] cf 2.4 [1.55] min; P = .004). Menthol-spray effects diminished despite repeated applications, indicating increased contribution of visceral thermoreceptors to thermal perception. Conclusion: Repeated menthol spraying improves exercise capacity but alters thermoregulation, potentially conflicting behavioral and thermoregulatory drivers; care should be taken with its use. Carrying and deploying menthol spray would impose a logistical burden that needs consideration against performance benefit.


1983 ◽  
Vol 55 (1) ◽  
pp. 218-224 ◽  
Author(s):  
N. McCartney ◽  
G. J. Heigenhauser ◽  
N. L. Jones

We studied maximal torque-velocity relationships and fatigue during short-term maximal exercise on a constant velocity cycle ergometer in 13 healthy male subjects. Maximum torque showed an inverse linear relationship to crank velocity between 60 and 160 rpm, and a direct relationship to thigh muscle volume measured by computerized tomography. Peak torque per liter thigh muscle volume (PT, N X ml-1) was related to crank velocity (CV, rpm) in the following equation: PT = 61.7 - 0.234 CV (r = 0.99). Peak power output was a parabolic function of crank velocity in individual subjects, but maximal power output was achieved at varying crank velocities in different subjects. Fiber type distribution was measured in the two subjects showing the greatest differences and demonstrated that a high proportion of type II fibers may be one factor associated with a high crank velocity for maximal power output. The decline in average power during 30 s of maximal effort was least at 60 rpm (23.7 +/- 4.6% of initial maximal power) and greatest at 140 rpm (58.7 +/- 6.5%). At 60 rpm the decline in power over 30 s was inversely related to maximal oxygen uptake (ml X min-1 X kg-1) (r = 0.69). Total work performed and plasma lactate concentration 3 min after completion of 30-s maximum effort were similar for each crank velocity.


2017 ◽  
Vol 5 (2) ◽  
pp. e13119 ◽  
Author(s):  
Tom A. Manselin ◽  
Olof Södergård ◽  
Filip J. Larsen ◽  
Peter Lindholm

1996 ◽  
Vol 81 (1) ◽  
pp. 246-251 ◽  
Author(s):  
D. R. Knight ◽  
D. C. Poole ◽  
M. C. Hogan ◽  
D. E. Bebout ◽  
P. D. Wagner

The normal rate of blood lactate accumulation during exercise is increased by hypoxia and decreased by hyperoxia. It is not known whether these changes are primarily determined by the lactate release in locomotory muscles or other tissues. Eleven men performed cycle exercise at 20, 35, 50, 92, and 100% of maximal power output while breathing 12, 21, and 100% O2. Leg lactate release was calculated at each stage of exercise as the product of femoral venous blood flow (thermodilution method) and femoral arteriovenous difference in blood lactate concentrations. Regression analysis showed that leg lactate release accounted for 90% of the variability in mean arterial lactate concentration at 20-92% maximal power output. This relationship was described by a regression line with a slope of 0.28 +/- 0.02 min/l and a y-intercept of 1.06 +/- 0.38 mmol/l (r2 = 0.90). There was no effect of inspired O2 concentration on this relationship (P > 0.05). We conclude that during continuous incremental exercise to fatigue the effect of inspired O2 concentration on blood lactate accumulation is principally determined by the rate of net lactate release in blood vessels of the locomotory muscles.


Automatica ◽  
2021 ◽  
Vol 123 ◽  
pp. 109366
Author(s):  
Rui Fu ◽  
Amirhossein Taghvaei ◽  
Yongxin Chen ◽  
Tryphon T. Georgiou

2003 ◽  
Vol 94 (2) ◽  
pp. 668-676 ◽  
Author(s):  
J. A. L. Calbet ◽  
J. A. De Paz ◽  
N. Garatachea ◽  
S. Cabeza de Vaca ◽  
J. Chavarren

The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O2 fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O2 uptake than S (72 ± 1 and 62 ± 2 ml · kg−1 · min−1, P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E ( P< 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E ( P < 0.05); however, S showed a larger fatigue index in both conditions ( P < 0.05). Compared with normoxia, hypoxia lowered O2 uptake by 16% in E and S ( P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.


2008 ◽  
Vol 42 (11) ◽  
pp. 568-571 ◽  
Author(s):  
H Kuipers ◽  
G A C V. Hullenaar ◽  
B M Pluim ◽  
S E Overbeek ◽  
O De Hon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document