scholarly journals Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists

2003 ◽  
Vol 94 (2) ◽  
pp. 668-676 ◽  
Author(s):  
J. A. L. Calbet ◽  
J. A. De Paz ◽  
N. Garatachea ◽  
S. Cabeza de Vaca ◽  
J. Chavarren

The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O2 fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O2 uptake than S (72 ± 1 and 62 ± 2 ml · kg−1 · min−1, P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E ( P< 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E ( P < 0.05); however, S showed a larger fatigue index in both conditions ( P < 0.05). Compared with normoxia, hypoxia lowered O2 uptake by 16% in E and S ( P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.

Author(s):  
Bernhard Prinz ◽  
Dieter Simon ◽  
Harald Tschan ◽  
Alfred Nimmerichter

Purpose: To determine aerobic and anaerobic demands of mountain bike cross-country racing. Methods: Twelve elite cyclists (7 males;  = 73.8 [2.6] mL·min-1·kg−1, maximal aerobic power [MAP] = 370 [26] W, 5.7 [0.4] W·kg−1, and 5 females;  = 67.3 [2.9] mL·min−1·kg−1, MAP = 261 [17] W, 5.0 [0.1] W·kg−1) participated over 4 seasons at several (119) international and national races and performed laboratory tests regularly to assess their aerobic and anaerobic performance. Power output, heart rate, and cadence were recorded throughout the races. Results: The mean race time was 79 (12) minutes performed at a mean power output of 3.8 (0.4) W·kg−1; 70% (7%) MAP (3.9 [0.4] W·kg−1 and 3.6 [0.4] W·kg−1 for males and females, respectively) with a cadence of 64 (5) rev·min−1 (including nonpedaling periods). Time spent in intensity zones 1 to 4 (below MAP) were 28% (4%), 18% (8%), 12% (2%), and 13% (3%), respectively; 30% (9%) was spent in zone 5 (above MAP). The number of efforts above MAP was 334 (84), which had a mean duration of 4.3 (1.1) seconds, separated by 10.9 (3) seconds with a mean power output of 7.3 (0.6) W·kg−1 (135% [9%] MAP). Conclusions: These findings highlight the importance of the anaerobic energy system and the interaction between anaerobic and aerobic energy systems. Therefore, the ability to perform numerous efforts above MAP and a high aerobic capacity are essential to be competitive in mountain bike cross-country.


Author(s):  
Ben M. Krings ◽  
Timothy J. Peterson ◽  
Brandon D. Shepherd ◽  
Matthew J. McAllister ◽  
JohnEric W. Smith

The purpose of this investigation was to examine to the influence of carbohydrate ingestion (CHOI) and carbohydrate mouth rinse (CHOR) on acute repeat maximal sprint performance. Fourteen healthy males (age: 21.7 ± 1.8 years, mass: 82.3 ± 12.3 kg) completed a total of five 15-s maximal repeat sprints on a cycle ergometer against 0.075 kg ・ kg-1 body mass each separated by 4 min of active recovery. Subjects completed four experimental trials and were randomly assigned one of four treatments: (1) CHOI, (2) CHOR, (3) placebo mouth rinse (PLAR), (4) placebo ingestion (PLAI). Subjects rinsed or ingested six 50 mL 10% CHO solutions throughout each trial. Performance variables measured included rating of perceived exertion, peak heart rate, peak and mean power output, fatigue index, and total work. Significant treatment main effects were observed for mean power output (p = 0.026), total work (p = 0.020), fatigue index (p = 0.004), and heart rate (p = 0.013). Overall mean power output and total work were significantly greater with CHOI (659.3 ± 103.0 watts, 9849.8 ± 1598.8 joules) compared with CHOR (645.8 ± 99.7 watts, 9447.5 ± 1684.9 joules, p < .05). CHOI (15.3 ± 8.6 watts/s) significantly attenuated fatigue index compared with CHOR (17.7 ± 10.4 watts/s, p < .05). Based on our findings, CHOI was more likely to provide a beneficial performance effect compared with CHOR, PLAI, and PLAR. Athletes required to complete repeat bouts of high intensity exercise may benefit from CHOI.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michal Wilk ◽  
Michal Krzysztofik ◽  
Jakub Jarosz ◽  
Pawel Krol ◽  
Katarzyna Leznicka ◽  
...  

This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum −1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2096959
Author(s):  
Yoshio Suzuki ◽  
Kotaro Sato ◽  
Norie Arai ◽  
Shin Endo

Trehalose is a disaccharide consisting of 2 glucose units linked in an alpha 1,1-glycosidic bond. Pre-exercise trehalose ingestion enhances exercise performance within 30 minutes. Enhanced performance was hypothesized to be due to a mouth rinse effect. A 3-arm double-blind crossover trial was conducted to test this hypothesis. Ten healthy male collegiate distance runners rinsed their mouths with either trehalose (6% w/v) or maltose (6% w/v) or acesulfame potassium (0.04 mg/mL) for 5 seconds and then performed an exercise assessment composed of 6-second peak power and endurance tests. Trehalose induced the highest mean power output ( P < .01) in peak power tests. In the endurance test, trehalose consistently showed higher mean power output than maltose. The 3 test drinks displayed indistinguishable sweetness and were expected to activate receptors for sweetness (T1R2-T1R3) with the same intensity. Trehalose activates taste receptors T1R1-T1R3, T1R3-T1R3 homodimer, and T1R2-T1R3, whereas sucrose activates only T1R2-T1R3. Therefore, a difference in mouth rinse effect might be due to a specific receptor in the oral cavity that recognizes differences between trehalose and maltose.


2020 ◽  
Vol 74 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Michal Krzysztofik ◽  
Michal Wilk

Abstract The present study aimed to determine the effects of plyometric push-ups as a conditioning activity (CA) on high-loaded bench press performance. Two groups of resistance-trained males age (24.5 ± 2.6 years, body mass 84.8 ± 8 kg) performed one of two CA protocols: 3 sets of 5 repetitions of plyometric push-ups with a 1 min rest interval between sets (PAPE; n=12) or equal time aerobic warm-up (CONT; n=12). Four minutes after completion of the CA protocols the participants performed 3 sets of 3 repetitions of the bench press exercise at 70%1RM and 4 min rest interval between sets to assess post-activation differences in peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) between conditions. The two-way ANOVA revealed significant condition × set interaction effect for PP (p<0.01), MP (p<0.05), PV (p<0.01), and MV (p=0.02). The post hoc for condition × set interaction showed that PAPE caused a significant decrease in PP and PV for P-Set2 and P-Set3 when compared to baseline (BA). The MP and MV for the PAPE condition decreased significantly during the P-Set3 compared to BA and to P-Set1. The t-test comparisons for delta values showed significant differences between PAPE and CONT in PP for P-Set1 – BA (p<0.01), in MP for P-Set2 – P-Set1 (p<0.03) and for P-Set3 – P-Set1 (p=0.04). Furthermore, there were significant differences in PV for P-Set3 – BA; P-Set2 – P-Set1; P-Set3 – P-Set1 (p<0.01; p<0.01; p<0.02 respectively). Finally, there were significant differences in MV for P-Set1 – BA; P-Set2 – P-Set1 and P-Set3 – P-Set1 (p<0.01; p<0.01; p<0.02 respectively). This study demonstrated that plyometric push-ups lead to performance enhancement of the bench press exercise at 70%1RM. The increases in performance were observed only in the first set following the CA, while a significant decrease of these variables was registered in P-Set2 and P-Set3.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Marie Clare Grant ◽  
Robert Robergs ◽  
Marianne Findlay Baird ◽  
Julien S. Baker

It has been reported previously that the upper body musculature is continually active during high intensity cycle ergometry. The aim of this study was to examine the effects of prior upper body exercise on subsequent Wingate (WAnT) performance. Eleven recreationally active males (20.8 ± 2.2 yrs; 77.7 ± 12.0 kg; 1.79 ± 0.04 m) completed two trials in a randomised order. In one trial participants completed2×30 s WAnT tests (WAnT1 and WAnT2) with a 6 min recovery period; in the other trial, this protocol was preceded with 4 sets of biceps curls to induce localised arm fatigue. Prior upper body exercise was found to have a statistically significant detrimental effect on peak power output (PPO) during WAnT1(P<0.05)but no effect was observed for mean power output (MPO)(P>0.05). Handgrip (HG) strength was also found to be significantly lower following the upper body exercise. These results demonstrate that the upper body is meaningfully involved in the generation of leg power during intense cycling.


Author(s):  
Søren Jessen ◽  
Søren Reitelseder ◽  
Anders Kalsen ◽  
Michael Kreiberg ◽  
Johan Onslev ◽  
...  

In this study, we examined the effect of beta2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber-type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+-handling in young men. Twenty-six men (23±2 years;mean±SD) were randomized to daily intake of oral salbutamol (16 mg/d;RES+SAL) or placebo (RES) during 11 weeks full-body resistance training 3 times/week. Mean power output during 10s maximal cycling increased more (P=0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL:+8%;RES:+7%;P=0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P≤0.001) in RES+SAL and 13 and 13% (P≤0.001) in RES, respectively. Myosin heavy chain (MHC) isoform distribution transitioned from MHCI and MHCIIx towards MHCIIa in RES+SAL (P=0.002), but not in RES (P=0.323). MHCIIa cross-sectional-area increased more (P=0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+-release rate increased in both groups (RES+SAL:+9%,P=0.048;RES:+13%,P=0.008), whereas Ca2+-uptake rate increased only in RES (+12%,P=0.022) but not different from the non-significant change in RES+SAL (+2%,P=0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%,P=0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P≥0.100). These observations suggest that salbutamol is a muscle anabolic drug, which induces greater sprint mean power output, without affecting peak power output and muscle strength when ingested during a period of resistance training.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 406 ◽  
Author(s):  
Michal Wilk ◽  
Aleksandra Filip ◽  
Michal Krzysztofik ◽  
Mariola Gepfert ◽  
Adam Zajac ◽  
...  

Background: The main objective of the current investigation was to evaluate the effects of caffeine on power output and bar velocity during an explosive bench press throw in athletes habituated to caffeine. Methods: Twelve resistance trained individuals habituated to caffeine ingestion participated in a randomized double-blind experimental design. Each participant performed three identical experimental sessions 60 min after the intake of a placebo, 3, and 6 mg/kg/b.m. of caffeine. In each experimental session, the participants performed 5 sets of 2 repetitions of the bench press throw (with a load equivalent to 30% repetition maximum (RM), measured in a familiarization trial) on a Smith machine, while bar velocity and power output were registered with a rotatory encoder. Results: In comparison to the placebo, the intake of caffeine increased mean bar velocity during 5 sets of the bench press throw (1.37 ± 0.05 vs. 1.41 ± 0.05 and 1.41 ± 0.06 m/s for placebo, 3, and 6 mg/kg/b.m., respectively; p < 0.01), as well as mean power output (545 ± 117 vs. 562 ± 118 and 560 ± 107 W; p < 0.01). However, caffeine was not effective at increasing peak velocity (p = 0.09) nor peak power output (p = 0.07) during the explosive exercise. Conclusion: The acute doses of caffeine before resistance exercise may increase mean power output and mean bar velocity during the bench press throw training session in a group of habitual caffeine users. Thus, caffeine prior to ballistic exercises enhances performance during a power-specific resistance training session.


2021 ◽  
Vol 78 (1) ◽  
pp. 219-228
Author(s):  
Aleksandra Filip-Stachnik ◽  
Michal Krzysztofik ◽  
Magdalena Kaszuba ◽  
Katarzyna Leznicka ◽  
Maciej Kostrzewa ◽  
...  

Abstract The main goal of this study was to evaluate the effectiveness of an acute dose of caffeine (6 mg/kg body mass (b.m.)) on power output and bar velocity during a bench press multiple-set resistance training session in participants with mild daily caffeine consumption (in the range of 1 to 3 mg/kg/b.m). Thirteen recreationally active male participants (age: 21.9 ± 1.2 years, body mass: 74.4 ± 5.3 kg, body mass index: 23.1 ± 1.6 kg/m2, bench press onerepetition maximum (1RM): 79.2 ± 14.9 kg), with daily caffeine ingestion of 1.56 ± 0.56 mg/kg/b.m., participated in the study with a randomized double-blind experimental design. Each participant performed two identical experimental sessions, 60 min after the intake of a placebo (PLAC) or 6 mg/kg/b.m. of caffeine (CAF-6). In each experimental session, participants performed 5 sets of 5 repetitions of the bench press exercise with a load equivalent to 70% 1RM. The eccentric and concentric phases of the bench press exercise were performed at maximal possible velocity in each repetition. Bar velocity was recorded with a linear position transducer and power output was calculated using velocity and load data. A two-way repeated measures ANOVA indicated no significant substance x set interaction for mean power output (MP), mean bar velocity (MV), peak power output (PP) and peak bar velocity (PV). However, there was a significant main effect of substance on MP (p < 0.01; η2 = 0.47) and MV (p < 0.01; η2 =0.45). Post hoc analysis for main effect revealed that MP and MV values in the CAF-6 group were higher than in the PLAC group in all 5 sets of the exercise (p < 0.05). In conclusion, this study demonstrated that an acute dose of caffeine before resistance exercise increased mean power output and mean bar velocity during a multiple-set bench press exercise protocol among mild caffeine users.


Sign in / Sign up

Export Citation Format

Share Document