Efficient Gene Transfer into Macrophages and Dendritic Cells by in Vivo Gene Delivery with Mannosylated Lipoplex via the Intraperitoneal Route

2006 ◽  
Vol 318 (2) ◽  
pp. 828-834 ◽  
Author(s):  
Yoshiyuki Hattori ◽  
Shigeru Kawakami ◽  
Kazumi Nakamura ◽  
Fumiyoshi Yamashita ◽  
Mitsuru Hashida
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Yoichi Negishi ◽  
Yuka Tsunoda ◽  
Yoko Endo-Takahashi ◽  
Yusuke Oda ◽  
Ryo Suzuki ◽  
...  

Recently, we have developed novel polyethylene glycol modified liposomes (bubble liposomes; BL) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. In this study, we investigated the usefulness of US-mediated gene transfer systems with BL into synoviocytes in vitro and joint synovium in vivo. Highly efficient gene transfer could be achieved in the cultured primary synoviocytes transfected with the combination of BL and US exposure, compared to treatment with plasmid DNA (pDNA) alone, pDNA plus BL, or pDNA plus US. When BL was injected into the knee joints of mice, and US exposure was applied transcutaneously to the injection site, highly efficient gene expression could be observed in the knee joint transfected with the combination of BL and US exposure, compared to treatment with pDNA alone, pDNA plus BL, or pDNA plus US. The localized and prolonged gene expression was also shown by an in vivo luciferase imaging system. Thus, this local gene delivery system into joint synovium using the combination of BL and US exposure may be an effective means for gene therapy in joint disorders.


2015 ◽  
Vol 12 (2) ◽  
pp. 453-462 ◽  
Author(s):  
Lior Raviv ◽  
Michal Jaron-Mendelson ◽  
Ayelet David

1998 ◽  
Vol 6 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Jessica C. Langer ◽  
Mary E. Klotman ◽  
Basil Hanss ◽  
Natalie Tulchin ◽  
Leslie A. Bruggeman ◽  
...  

FEBS Letters ◽  
2001 ◽  
Vol 504 (3) ◽  
pp. 99-103 ◽  
Author(s):  
Kenneth Lundstrom ◽  
Christophe Schweitzer ◽  
Daniel Rotmann ◽  
Danielle Hermann ◽  
Edith M. Schneider ◽  
...  

2009 ◽  
Vol 11 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Mahmud Uzzaman ◽  
Gordon Keller ◽  
Isabelle M. Germano

2015 ◽  
Vol 112 (22) ◽  
pp. E2947-E2956 ◽  
Author(s):  
Makoto Matsuyama ◽  
Yohei Ohashi ◽  
Tadashi Tsubota ◽  
Masae Yaguchi ◽  
Shigeki Kato ◽  
...  

Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor–envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVBS3, TVC, TVBT, and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA–EnvA, 99.6%; TVBS3–EnvB, 97.7%; TVC–EnvC, 98.2%; and DR-46TVB–EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor–envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.


2016 ◽  
Vol 27 (3) ◽  
pp. 549-561 ◽  
Author(s):  
M. Dolores Giron-Gonzalez ◽  
Rafael Salto-Gonzalez ◽  
F. Javier Lopez-Jaramillo ◽  
Alfonso Salinas-Castillo ◽  
Ana Belen Jodar-Reyes ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Ashley Bathgate ◽  
Norma C Salazar

Introduction: It is widely accepted nowadays that elevation of serum levels of aldosterone, a mineralocorticoid hormone with toxic effects in several cardiovascular tissues, including the heart and cerebral blood vessels, can significantly raise stroke risk. The success of mineralocorticoid receptor blockers, such as eplerenone, at preventing stroke attacks attests to this. Aldosterone is normally produced and secreted by the adrenal cortex in response to angiotensin II. We recently reported that adrenal βarrestin1 (βarr1) plays a crucial role in the physiological angiotensin II-stimulated aldosterone production in the adrenal cortex, leading to marked elevation of circulating serum aldosterone levels in vivo (Lymperopoulos A. et al., Proc. Natl. Acad. Sci. USA. 2009;106:5825-5830). Hypothesis: Herein, we examined the potential impact of this adrenal βarr1-dependent aldosterone elevation on stroke risk in experimental animals in vivo. Methods: We used the βarr1 knockout (βarr1KO) mouse model, studying it alongside wild type (WT) control mice, and also adult male Sprague-Dawley rats, in which adrenal βarr1 was overexpressed in vivo via adrenal-targeted adenoviral-mediated βarr1 gene transfer. Serum aldosterone was measured by ELISA and blood pressure via telemetry. Results: Serum aldosterone at 7 days post-in vivo gene delivery was markedly elevated in adrenal βarr1-overexpressing rats (536+50 pg/ml), compared to control rats receiving the green fluorescent protein (GFP) adenoviral transgene (235+40 pg/ml, p<0.05, n=5). This translated to a significant increase in mean arterial pressure of the βarr1-overexpressing rats (155+5 mmHg) compared to control GFP-expressing rats (137+8 mmHg, p<0.05, n=5), again at 7 days post-in vivo gene delivery, which was prevented by concurrent eplerenone treatment. In contrast, βarr1KO mice had significantly lower serum aldosterone levels (270+20 pg/ml) compared to WT controls (498+35 pg/ml, p<0.05, n=5), at 4 weeks post-experimental myocardial infarction. Conclusions: Adrenal βarr1 up-regulation can dramatically increase circulating aldosterone levels and systemic blood pressure, thus conferring increased risk for stroke in experimental rodents.


Sign in / Sign up

Export Citation Format

Share Document