A Comparison between Ranolazine and CVT-4325, a Novel Inhibitor of Fatty Acid Oxidation, on Cardiac Metabolism and Left Ventricular Function in Rat Isolated Perfused Heart during Ischemia and Reperfusion

2007 ◽  
Vol 321 (1) ◽  
pp. 213-220 ◽  
Author(s):  
Peipei Wang ◽  
Heather Fraser ◽  
Steven G. Lloyd ◽  
Jeffrey J. McVeigh ◽  
Luiz Belardinelli ◽  
...  
2002 ◽  
Vol 8 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Hani N. Sabbah ◽  
Margaret P. Chandler ◽  
Takayuki Mishima ◽  
George Suzuki ◽  
Pervaiz Chaudhry ◽  
...  

2002 ◽  
Vol 34 (6) ◽  
pp. A81
Author(s):  
Margaret P. Chandler ◽  
William C. Stanley ◽  
Hideaki Morita ◽  
George Suzuki ◽  
Omar Nass ◽  
...  

2017 ◽  
Vol 312 (2) ◽  
pp. H239-H249 ◽  
Author(s):  
Stephen W. Standage ◽  
Brock G. Bennion ◽  
Taft O. Knowles ◽  
Dolena R. Ledee ◽  
Michael A. Portman ◽  
...  

Children with sepsis and multisystem organ failure have downregulated leukocyte gene expression of peroxisome proliferator-activated receptor-α (PPARα), a nuclear hormone receptor transcription factor that regulates inflammation and lipid metabolism. Mouse models of sepsis have likewise demonstrated that the absence of PPARα is associated with decreased survival and organ injury, specifically of the heart. Using a clinically relevant mouse model of early sepsis, we found that heart function increases in wild-type (WT) mice over the first 24 h of sepsis, but that mice lacking PPARα ( Ppara−/−) cannot sustain the elevated heart function necessary to compensate for sepsis pathophysiology. Left ventricular shortening fraction, measured 24 h after initiation of sepsis by echocardiography, was higher in WT mice than in Ppara−/− mice. Ex vivo working heart studies demonstrated greater developed pressure, contractility, and aortic outflow in WT compared with Ppara−/− mice. Furthermore, cardiac fatty acid oxidation was increased in WT but not in Ppara−/− mice. Regulatory pathways controlling pyruvate incorporation into the citric acid cycle were inhibited by sepsis in both genotypes, but the regulatory state of enzymes controlling fatty acid oxidation appeared to be permissive in WT mice only. Mitochondrial ultrastructure was not altered in either genotype indicating that severe mitochondrial dysfunction is unlikely at this stage of sepsis. These data suggest that PPARα expression supports the hyperdynamic cardiac response early in the course of sepsis and that increased fatty acid oxidation may prevent morbidity and mortality. NEW & NOTEWORTHY In contrast to previous studies in septic shock using experimental mouse models, we are the first to demonstrate that heart function increases early in sepsis with an associated augmentation of cardiac fatty acid oxidation. Absence of peroxisome proliferator-activated receptor-α (PPARα) results in reduced cardiac performance and fatty acid oxidation in sepsis.


1990 ◽  
Vol 258 (1) ◽  
pp. H51-H56 ◽  
Author(s):  
S. E. Litwin ◽  
T. E. Raya ◽  
R. G. Gay ◽  
J. B. Bedotto ◽  
J. J. Bahl ◽  
...  

This study was designed to determine the changes in the heart that result from inhibition of long-chain fatty acid oxidation with 2-tetradecylglycidic acid (TDGA). Male Sprague-Dawley rats (n = 64) were treated with TDGA (20 mg.kg-1.day-1) or a comparable volume of vehicle by gavage feeding for 7 or 21 days. In conscious rats TDGA produced no changes in heart rate, left ventricular systolic or end-diastolic pressures, left ventricular pressure development (dP/dt), or the time constant of left ventricular relaxation. Left ventricular developed pressure was not changed at 21 days. TDGA increased left ventricular weight, left ventricular weight-to-body weight ratio, and total heart weight-to-body weight ratio. Left ventricular endocardial and epicardial myocyte volumes were increased by 53 and 65%, respectively. Myocardial triglyceride content was increased threefold. Left ventricular chamber stiffness constants between end-diastolic pressures of 0 and 30 mmHg were increased, and left ventricular end-diastolic volumes at operating end-diastolic pressures were decreased at both 7 and 21 days. The myocardial stiffness constant was also increased at 7 and 21 days. Thus inhibition of long-chain fatty acid oxidation with TDGA increased left ventricular mass and altered left ventricular chamber and muscle stiffness without changing left ventricular relaxation or systolic function. We conclude that inhibition of long-chain fatty acid oxidation produced an unusual model of left ventricular hypertrophy and diastolic dysfunction characterized by abnormalities of passive-elastic properties but preserved relaxation.


Author(s):  
Giuseppe Rosano ◽  
Andrew Coats

Heart failure is associated with altered cardiac metabolism, in part, due to maladaptive mechanisms, in part secondary to comorbidities such as diabetes and ischaemic heart disease. The metabolic derangements taking place in heart failure are not limited to the cardiac myocytes, but extend to skeletal muscles and the vasculature causing changes that contribute to the worsening of exercise capacity. Modulation of cardiac metabolism with partial inhibition of free fatty acid oxidation has been shown to be beneficial in patients with heart failure. At the present, the bulk of evidence for this class of drugs comes from Trimetazidine. Newer compounds partially inhibiting free fatty acid oxidation or facilitating the electron transport on the mitochondrial cristae are in early phase of their clinical development.


Sign in / Sign up

Export Citation Format

Share Document