scholarly journals Attenuation by Statins of Membrane Raft-Redox Signaling in Coronary Arterial Endothelium

2013 ◽  
Vol 345 (2) ◽  
pp. 170-179 ◽  
Author(s):  
Yu-Miao Wei ◽  
Xiang Li ◽  
Jing Xiong ◽  
Justine M. Abais ◽  
Min Xia ◽  
...  
2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Gurinder Bir Singh ◽  
Sai Patibandla ◽  
Yang Zhang ◽  
Pin‐Lan Li ◽  
Saisudha Koka ◽  
...  

Author(s):  
A. Trillo

There are conflicting reports regarding some fine structural details of arteries from several animal species. Buck denied the existence of a sub-endothelial space, while Karrer and Keech described a space of variable width which separates the endothelium from the underlying internal elastic lamina in aortas of aging rats and mice respectively.The present communication deals with the ultrastrueture of the interface between the endothelial cell layer and the internal elastic lamina as observed in carotid arteries from rabbits of varying ages.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Steen Vang Petersen ◽  
Nanna Bach Poulsen ◽  
Cecilie Linneberg Matthiesen ◽  
Frederik Vilhardt

Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1090
Author(s):  
Ursula Abou-Rjeileh ◽  
G. Andres Contreras

Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.


Sign in / Sign up

Export Citation Format

Share Document