Effects of (±)-4-{[2-(1-Methyl-2-pyrrolidinyl)ethyl]thio}phenol Hydrochloride (SIB-1553A), a Selective Ligand for Nicotinic Acetylcholine Receptors, in Tests of Visual Attention and Distractibility in Rats and Monkeys

2002 ◽  
Vol 301 (1) ◽  
pp. 284-292 ◽  
Author(s):  
A. V. Terry ◽  
V. B. Risbrough ◽  
J. J. Buccafusco ◽  
F. Menzaghi
2020 ◽  
Vol 14 ◽  
Author(s):  
Thao N. T. Ho ◽  
Nikita Abraham ◽  
Richard J. Lewis

Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.


2014 ◽  
Vol 9 (5) ◽  
pp. 1153-1159 ◽  
Author(s):  
Christopher B. Marotta ◽  
Iva Rreza ◽  
Henry A. Lester ◽  
Dennis A. Dougherty

2000 ◽  
Vol 57 (3) ◽  
pp. 642-649 ◽  
Author(s):  
Alexey G. Mukhin ◽  
Daniela Gündisch ◽  
Andrew G. Horti ◽  
Andrei O. Koren ◽  
Gilles Tamagnan ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 1028-1029
Author(s):  
R. Shoop ◽  
M. Martone ◽  
N. Yamada ◽  
M. Ellisman ◽  
D. Berg

Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane proteins that function as cation selective, ligand-gated ion channels and are widely distributed throughout the vertebrate nervous system. One of the most abundant nAChRs is a species that contains the α7 gene product (α7-AChRs), binds the snake venom oc-bungarotoxin, and rapidly desensitizes. These receptors have been shown to function at presynaptic sites to modulate transmitter release, as well as on postsynaptic cells where they mediate transmission. Interestingly, these receptors have an exceptionally high relative permeability to calcium.In the chick ciliary ganglion, the α 7-AChRs play a prominent role, by generating large synaptic currents, but the receptors appear to be excluded from postysnaptic densities on the cell. Immunohistochemical studies have shown that the receptors form large clusters on the surface of the ciliary ganglion neurons. We have recently shown that the α 7-containing receptors are concentrated on mats of somatic spines in close proximity to putative sites of presynaptic transmitter release.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaodan Li ◽  
Jian Xiong ◽  
Baojian Zhang ◽  
Dongting Zhangsun ◽  
Sulan Luo

Morphine, the main component of opium, is a commonly used analgesic in clinical practice, but its abuse potential limits its clinical application. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic circuitry play an important role in the rewarding effects of abused drugs. Previous studies have showed that α6β2* (* designated other subunits) nAChRs are mainly distributed in dopaminergic neurons in the midbrain area, which regulates the release of dopamine. So α6β2* nAChRs are regarded as a new target to treat drug abuse. α-Conotoxin TxIB was discovered in our lab, which is the most selective ligand to inhibit α6β2* nAChRs only. Antagonists of α6β2* nAChRs decreased nicotine, cocaine, and ethanol rewarding effects previously. However, their role in morphine addiction has not been reported so far. Thus, it is worth evaluating the effect of α-conotoxin TxIB on the morphine-induced conditioned place preference (CPP) and its behavioral changes in mice. Our results showed that TxIB inhibited expression and acquisition of morphine-induced CPP and did not produce a rewarding effect by itself. Moreover, repeated injections of TxIB have no effect on learning, memory, locomotor activity, and anxiety-like behavior. Therefore, blocking α6/α3β2β3 nAChRs inhibits the development of morphine-induced CPP. α-Conotoxin TxIB may be a potentially useful compound to mitigate the acquisition and/or retention of drug-context associations.


2011 ◽  
Vol 82 (8) ◽  
pp. 1029
Author(s):  
Yingxian Xiao ◽  
Edward Tuan ◽  
Robert P. Yasuda ◽  
Niaz Sahibzada ◽  
Barry B. Wolfe ◽  
...  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S586-S586 ◽  
Author(s):  
Kazuo Hashikawa ◽  
Hidefumi Yoshida ◽  
Nobukatsu Sawamoto ◽  
Shigetoshi Takaya ◽  
Chihiro Namiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document