High-throughput screening of TRPV1 ligands in the light of the Bioluminescence Resonance Energy Transfer technique

2021 ◽  
pp. MOLPHARM-AR-2021-000271
Author(s):  
Yann Chappe ◽  
Pauline Michel ◽  
Alexandre Joushomme ◽  
Solène Barbeau ◽  
Sandra Pierredon ◽  
...  
2005 ◽  
Vol 10 (5) ◽  
pp. 463-475 ◽  
Author(s):  
Fadi F. Hamdan ◽  
Martin Audet ◽  
Philippe Garneau ◽  
Jerry Pelletier ◽  
Michel Bouvier

In this study, the authors developed HEK293 cell lines that stably coexpressed optimal amounts of β-arrestin2-Rluc and VENUS fusions of G protein-coupled receptors (GPCRs) belonging to both class A and class B receptors, which include receptors that interact transiently or stably with β-arrestins. This allowed the use of a bioluminescence resonance energy transfer (BRET) 1- β-arrestin2 translocation assay to quantify receptor activation or inhibition. One of the developed cell lines coexpressing CCR5-VENUS and β-arrestin2- Renillaluciferase was then used for high-throughput screening (HTS) for antagonists of the chemokine receptor CCR5, the primary co-receptor for HIV. Atotal of 26,000 compounds were screened for inhibition of the agonist-promoted β-arrestin2 recruitment to CCR5, and 12 compounds were found to specifically inhibit the agonist-induced β-arrestin2 recruitment to CCR5. Three of the potential hits were further tested using other functional assays, and their abilities to inhibit CCR5 agonist-promoted signaling were confirmed. This is the 1st study describing a BRET1- ßarrestin recruitment assay in stablemammalian cells and its successful application in HTS for GPCRs antagonists.


2011 ◽  
Vol 16 (5) ◽  
pp. 486-493 ◽  
Author(s):  
Adam B. Shapiro ◽  
Ann E. Eakin ◽  
Grant K. Walkup ◽  
Olga Rivin

DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5′-PO4 and 3′-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD+-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer–based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD+-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.


2007 ◽  
Vol 13 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Thomas Schröter ◽  
Dmitriy Minond ◽  
Amiee Weiser ◽  
Chinh Dao ◽  
Jeff Habel ◽  
...  

Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 ± 27 nM and 336 ± 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 ± 7.8 nM and 150 ± 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z′ values during the HTS campaign (0.84 ± 0.03; 0.72 ± 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available. ( Journal of Biomolecular Screening 2008:17-28)


Sign in / Sign up

Export Citation Format

Share Document