scholarly journals Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties

2019 ◽  
Vol 5 (3) ◽  
pp. eaau7375 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

Brain pericytes play important roles in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system disorders. While human pluripotent stem cells (hPSCs) have been used to model other NVU cell types, including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, hPSC-derived brain pericyte–like cells have not been integrated into these models. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from hPSCs and subsequently differentiated NCSCs to brain pericyte–like cells. These cells closely resembled primary human brain pericytes and self-assembled with endothelial cells. The brain pericyte–like cells induced blood-brain barrier properties in BMECs, including barrier enhancement and reduced transcytosis. Last, brain pericyte–like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human model that should prove useful for the study of the NVU.

2018 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

ABSTRACTBrain pericytes play an important role in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system (CNS) disorders. While human pluripotent stem cells (hPSCs) have been used to model other components of the NVU including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, cells having brain pericyte-like phenotypes have not been described. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from human pluripotent stem cells (hPSCs) and subsequently differentiated NCSCs to brain pericyte-like cells. The brain pericyte-like cells expressed marker profiles that closely resembled primary human brain pericytes, and they self-assembled with endothelial cells to support vascular tube formation. Importantly, the brain pericyte-like cells induced blood-brain barrier (BBB) properties in BMECs, including barrier enhancement and reduction of transcytosis. Finally, brain pericyte-like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human NVU model that should prove useful for the study of the BBB in CNS health, disease, and therapy.


2021 ◽  
Author(s):  
Alejandro Gonzalez-Candia ◽  
Nicole K. Rogers ◽  
Rodrigo L. Castillo

The blood circulation interface and the neural tissue feature unique characteristics encompassed by the term blood -brain barrier (BBB). The barrier’s primary functions are maintenance of brain homeostasis, selective transport, and protection, all of them determined by its specialized multicellular structure. The BBB primarily exists at the level of the brain microvascular endothelium; however, endothelial cells are not intrinsically capable of forming a barrier. Indeed, the development of barrier characteristics in cerebral endothelial cells requires coordinated cell–cell interactions and signaling from glial cells (i.e., astrocytes, microglia), pericytes, neurons, and extracellular matrix. Such an intricate relationship implies the existence of a neurovascular unit (NVU). The NVU concept emphasizes that the dynamic BBB response to stressors requires coordinated interactions between various central nervous system (CNS) cell types and structures. Every cell type makes an indispensable contribution to the BBBs integrity, and any cell’s failure or dysfunction might result in the barrier breakdown, with dramatic consequences, such as neuroinflammation and neurodegeneration. This chapter will focus on the structure and function of the BBB and discuss how BBB breakdown causes detrimental brain function.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Shyanne Page ◽  
Ronak Patel ◽  
Abraham Alahmad

The blood-brain barrier (BBB) constitutes a component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by astrocytes, pericytes and neurons. During ischemic stroke injury, the BBB constitutes the first responding element resulting in the opening of the BBB and eventually neural cell death by excitotoxicity. A better understanding of the cellular mechanisms underlying the opening of the BBB during ischemic stroke is essential to identify targets to restore such barrier function after injury. Current in vitro models of the human BBB, based on primary or immortalized BMECs monocultures, display poor barrier properties but also lack one or two cellular components of the neurovascular unit.In this study, we designed an integrative in vitro model of the BBB by generating BMECs, astrocytes and neurons using patient-derived BMECs from two iPSC lines (IMR90-c4 and CTR66M). We were able to obtain all three cell types from these two cell lines. iPSC-derived BMECs showed barrier properties similar or better barrier function than hCMEC/D3 monolayer (an immortalized adult somatic BMEC). Furthermore, iPSC—derived astrocytes were capable to induce barrier properties in BMECs upon co-cultures. whereas iPSC-derived neurons were capable to form extensive and branched neurites. Upon OGD stress, iPSC-derived BMECs showed a disruption of their barrier function as early as 6 hours of OGD stress and showed a complete disruption by 24 hours. Such disruption was reversed by reoxygenation. Interestingly such barrier disruption occurs through a VEGF-independent mechanism. In the other hand, iPSC-derived neurons showed a significant decrease in cell metabolic activity preceding neurites pruning. Finally, astrocytes showed the most robust phenotype, as we noted no cell death by 24 hours OGD.In this study, we demonstrated the ability to differentiate three cell types from the same patient in two iPSC lines. We also demonstrated the ability of these cells to respond to OGD/reoxygenation stress in agreement with the current literature. We are currently investigating the molecular mechanisms by which OGD/reoxygenation drive the cellular response in these cell types.


2021 ◽  
Vol 22 (9) ◽  
pp. 4725
Author(s):  
Karina Vargas-Sanchez ◽  
Monica Losada-Barragán ◽  
Maria Mogilevskaya ◽  
Susana Novoa-Herrán ◽  
Yehidi Medina ◽  
...  

Neurodegenerative diseases are characterized by increased permeability of the blood–brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope–receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.


2020 ◽  
Vol 21 (2) ◽  
pp. 591 ◽  
Author(s):  
Wolfgang Löscher ◽  
Alon Friedman

The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a ‘second line defense’ mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.


2017 ◽  
Vol 8 (4) ◽  
pp. 894-906 ◽  
Author(s):  
Antje Appelt-Menzel ◽  
Alevtina Cubukova ◽  
Katharina Günther ◽  
Frank Edenhofer ◽  
Jörg Piontek ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48428 ◽  
Author(s):  
Barbara Deracinois ◽  
Sophie Duban-Deweer ◽  
Gwënaël Pottiez ◽  
Roméo Cecchelli ◽  
Yannis Karamanos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document