scholarly journals A reversible oxygen redox reaction in bulk-type all-solid-state batteries

2020 ◽  
Vol 6 (25) ◽  
pp. eaax7236 ◽  
Author(s):  
Kenji Nagao ◽  
Yuka Nagata ◽  
Atsushi Sakuda ◽  
Akitoshi Hayashi ◽  
Minako Deguchi ◽  
...  

An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li2RuO3 as a lithium-excess model material with Li2SO4, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li2RuO3-Li2SO4 matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries.

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Lilian Schwich ◽  
Michael Küpers ◽  
Martin Finsterbusch ◽  
Andrea Schreiber ◽  
Dina Fattakhova-Rohlfing ◽  
...  

In the coming years, the demand for safe electrical energy storage devices with high energy density will increase drastically due to the electrification of the transportation sector and the need for stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries (ASBs) are considered one of the most promising candidates for future energy storage technologies. They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such examinations will play an important role when considering raw materials supply, sustainability of battery systems, CO2 footprint, and general strive towards a circular economy. Although different methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due to differences in used materials and fabrication technologies, even if the chemistry does not change (e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components and thus the necessity for specific recycling strategies are investigated here for the first time. As a major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is reached by this study, which will be experimentally examined in future research.


Author(s):  
Tao Yu ◽  
Bingyu Ke ◽  
Haoyu Li ◽  
Shaohua Guo ◽  
Haoshen Zhou

All solid-state batteries (ASSBs) have gained extensive attention due to the improved safety, and high specific energy density compared with conventional liquid lithium-ion batteries. As the key component of ASSBs,...


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


2021 ◽  
pp. 1831-1838
Author(s):  
Xing Xing ◽  
Yejing Li ◽  
Shen Wang ◽  
Haodong Liu ◽  
Zhaohui Wu ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


Author(s):  
Maoyi Yi ◽  
Li Jie ◽  
Xin-ming Fan ◽  
Maohui Bai ◽  
Zhi Zhang ◽  
...  

PEO-based composite electrolytes are one of the most practical electrolytes in all-solid batteries (ASSBs). To achieve the perspective of ASSBs with high energy density, PEO based composite electrolytes should match...


2020 ◽  
Vol 22 (17) ◽  
pp. 9204-9209 ◽  
Author(s):  
Yigang Yan ◽  
Wilke Dononelli ◽  
Mathias Jørgensen ◽  
Jakob B. Grinderslev ◽  
Young-Su Lee ◽  
...  

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery.


2018 ◽  
Vol 11 (8) ◽  
pp. 2142-2158 ◽  
Author(s):  
Raimund Koerver ◽  
Wenbo Zhang ◽  
Lea de Biasi ◽  
Simon Schweidler ◽  
Aleksandr O. Kondrakov ◽  
...  

The volume effects of electrode materials can cause local stress development, contact loss and particle cracking in the rigid environment of a solid-state battery.


Sign in / Sign up

Export Citation Format

Share Document