scholarly journals A multifunctional surfactant catalyst inspired by hydrolases

2020 ◽  
Vol 6 (14) ◽  
pp. eaaz0404 ◽  
Author(s):  
Mitchell D. Nothling ◽  
Zeyun Xiao ◽  
Nicholas S. Hill ◽  
Mitchell T. Blyth ◽  
Ayana Bhaskaran ◽  
...  

The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.

2013 ◽  
Vol 454 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Patrick Masson ◽  
Sofya Lushchekina ◽  
Lawrence M. Schopfer ◽  
Oksana Lockridge

CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E′. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈108 M−1·min−1). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp70 in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E′, indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E′. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His438, leading to the less reactive form E′.


1989 ◽  
Vol 258 (3) ◽  
pp. 765-768 ◽  
Author(s):  
B P Murphy ◽  
R F Pratt

An 8-thionocephalosporin was shown to be a substrate of the beta-lactamase II of Bacillus cereus, a zinc metalloenzyme. Although it is a poorer substrate, as judged by the Kcat./Km parameter, than the corresponding 8-oxocephalosporin, the discrimination against sulphur decreased when the bivalent metal ion in the enzyme active site was varied in the order Mn2+ (the manganese enzyme catalysed the hydrolysis of the oxo compound but not that of the thiono compound), Zn2+, Co2+ and Cd2+. This result is taken as evidence for kinetically significant direct contact between the active-site metal ion of beta-lactamase II and the beta-lactam carbonyl heteroatom. No evidence was obtained, however, for accumulation of an intermediate with such co-ordination present.


1982 ◽  
Vol 47 (16) ◽  
pp. 3105-3112 ◽  
Author(s):  
Giuseppe Bellucci ◽  
Giancarlo Berti ◽  
Roberto Bianchini ◽  
Pasquale Cetera ◽  
Ettore Mastrorilli

2017 ◽  
Author(s):  
Chris H. Hill ◽  
Georgia M. Cook ◽  
Samantha J. Spratley ◽  
Stephen C. Graham ◽  
Janet E. Deane

AbstractSphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase β-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction reveal how specificity of saposin binding to hydrolases is encoded.


1971 ◽  
Vol 125 (1) ◽  
pp. 275-284 ◽  
Author(s):  
J. E. G. Barnett ◽  
D. L. Corina ◽  
G. Rasool

N-Acetylneuraminic acid aldolase from Clostridium perfringens was irreversibly inactivated by 1mm-bromopyruvate with a half-life of 4.2min at pH7.2 and 37°C. The rate of inactivation was diminished in the presence of pyruvate but not with N-acetyl-d-mannosamine, indicating that the inhibitor acted at, or close to, the pyruvate-binding site. The apparent Ki for bromopyruvate, calculated from the variation of half-life with inhibitor concentration, was 0.46mm, compared with a competitive Ki 3.0mm for pyruvate. Incubation of the enzyme with radioactive bromopyruvate gave a radioactive, enzymically inactive, protein in which the bromopyruvate had alkylated cysteine residues. Incubation of the enzyme with radioactive pyruvate, followed by reduction with sodium borohydride, led to inactivation of the enzyme and binding of the pyruvate to the protein by reduction of a Schiff's base initially formed with the ∈-amino group of a lysine residue; only one-twentieth as many pyruvyl residues were bound by this method, showing that bromopyruvate is not specific for the active site. After protection of the enzyme active site with pyruvate, treatment with unlabelled bromopyruvate and dialysis, the enzyme retained 72% activity. When this treated enzyme was separately incubated with radioactive bromopyruvate, or radioactive pyruvate followed by sodium borohydride, the ratio of radioactive pyruvyl residues bound by the two methods was 2.3:1. After reduction and hydrolysis of the bromopyruvate-treated enzyme, the only detectable radioactive amino acid derivative was chromatographically and electrophoretically identical with S-(3-lactic acid)-cysteine. The enzyme was fully active in the presence of EDTA and was not stimulated by bivalent metal ions. It was strongly inhibited by silver and mercuric ions. The apparent molecular weight, determined by Sephadex chromatography, was 250000. A mechanism of action is proposed for the enzyme. Bromopyruvate reacts rapidly at pH6.0 with thiol-containing amino acids. Cysteine appears to react anomalously.


2008 ◽  
Vol 130 (41) ◽  
pp. 13696-13708 ◽  
Author(s):  
Paul A. Sigala ◽  
Daniel A. Kraut ◽  
Jose M. M. Caaveiro ◽  
Brandon Pybus ◽  
Eliza A. Ruben ◽  
...  

2000 ◽  
Vol 345 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Dieter BECKER ◽  
Karin S. H. JOHNSON ◽  
Anu KOIVULA ◽  
Martin SCHÜLEIN ◽  
Michael L. SINNOTT

We have measured the hydrolyses of α- and β-cellobiosyl fluorides by the Cel6A [cellobiohydrolase II (CBHII)] enzymes of Humicola insolens and Trichoderma reesei, which have essentially identical crystal structures [Varrot, Hastrup, Schülein and Davies (1999) Biochem. J. 337, 297-304]. The β-fluoride is hydrolysed according to Michaelis-Menten kinetics by both enzymes. When the ~ 2.0% of β-fluoride which is an inevitable contaminant in all preparations of the α-fluoride is hydrolysed by Cel7A (CBHI) of T. reesei before initial-rate measurements are made, both Cel6A enzymes show a sigmoidal dependence of rate on substrate concentration, as well as activation by cellobiose. These kinetics are consistent with the classic Hehre resynthesis-hydrolysis mechanism for glycosidase-catalysed hydrolysis of the ‘wrong’ glycosyl fluoride for both enzymes. The Michaelis-Menten kinetics of α-cellobiosyl fluoride hydrolysis by the T. reesei enzyme, and its inhibition by cellobiose, previously reported [Konstantinidis, Marsden and Sinnott (1993) Biochem. J. 291, 883-888] are withdrawn. 1H NMR monitoring of the hydrolysis of α-cellobiosyl fluoride by both enzymes reveals that in neither case is α-cellobiosyl fluoride released into solution in detectable quantities, but instead it appears to be hydrolysed in the enzyme active site as soon as it is formed.


Science ◽  
2014 ◽  
Vol 346 (6216) ◽  
pp. 1525-1528 ◽  
Author(s):  
Woon Ju Song ◽  
F. Akif Tezcan

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Sign in / Sign up

Export Citation Format

Share Document