scholarly journals The mechanism of sphingolipid processing revealed by a GALC-SapA complex structure

2017 ◽  
Author(s):  
Chris H. Hill ◽  
Georgia M. Cook ◽  
Samantha J. Spratley ◽  
Stephen C. Graham ◽  
Janet E. Deane

AbstractSphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase β-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction reveal how specificity of saposin binding to hydrolases is encoded.

2016 ◽  
Vol 14 (05) ◽  
pp. 1650028 ◽  
Author(s):  
Deyong He ◽  
Ling Huang ◽  
Yaping Xu ◽  
Xiaoliang Pan ◽  
Lijun Liu

Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins. The enzyme has been established as an efficacious and safe therapeutic target for the management of obesity. Here, a systematic profile of the lipase inhibitor response of three anti-obesity agents (Orlistat, Lipstatin, and Cetilistat) to clinical LPL missense mutations arising from disease single nucleotide polymorphisms (SNPs) was established by integrating complex structure modeling, virtual mutagenesis, molecular dynamics (MD) simulations, binding energy analysis, and radiolabeled TG hydrolysis assays. The profile was then used to characterize the resistance and sensitivity of systematic mutation–inhibitor pairs. It is suggested that the Orlistat and Lipstatin have a similar response profile to the investigated mutations due to their homologous chemical structures, but exhibit a distinct profile to that of Cetilistat. Most mutations were predicted to have a modest or moderate effect on inhibitor binding; they are located far away from the enzyme active site and thus can only influence the binding limitedly. A number of mutations were found to sensitize or cause resistance for lipase inhibitors by directly interacting with the inhibitor ligands or by indirectly addressing allosteric effect on enzyme active site. Long-term MD simulations revealed a different noncovalent interaction network at the complex interfaces of Orlistat with wild-type LPL as well as its sensitized mutant H163R and resistant mutant I221T.


2020 ◽  
Vol 6 (14) ◽  
pp. eaaz0404 ◽  
Author(s):  
Mitchell D. Nothling ◽  
Zeyun Xiao ◽  
Nicholas S. Hill ◽  
Mitchell T. Blyth ◽  
Ayana Bhaskaran ◽  
...  

The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1679
Author(s):  
Vishnu Mohan ◽  
Jean P. Gaffney ◽  
Inna Solomonov ◽  
Maxim Levin ◽  
Mordehay Klepfish ◽  
...  

Matrix metalloproteases (MMPs) undergo post-translational modifications including pro-domain shedding. The activated forms of these enzymes are effective drug targets, but generating potent biological inhibitors against them remains challenging. We report the generation of anti-MMP-7 inhibitory monoclonal antibody (GSM-192), using an alternating immunization strategy with an active site mimicry antigen and the activated enzyme. Our protocol yielded highly selective anti-MMP-7 monoclonal antibody, which specifically inhibits MMP-7′s enzyme activity with high affinity (IC50 = 132 ± 10 nM). The atomic model of the MMP-7-GSM-192 Fab complex exhibited antibody binding to unique epitopes at the rim of the enzyme active site, sterically preventing entry of substrates into the catalytic cleft. In human PDAC biopsies, tissue staining with GSM-192 showed characteristic spatial distribution of activated MMP-7. Treatment with GSM-192 in vitro induced apoptosis via stabilization of cell surface Fas ligand and retarded cell migration. Co-treatment with GSM-192 and chemotherapeutics, gemcitabine and oxaliplatin elicited a synergistic effect. Our data illustrate the advantage of precisely targeting catalytic MMP-7 mediated disease specific activity.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1004
Author(s):  
Mahmoud A. El Hassab ◽  
Mohamed Fares ◽  
Mohammed K. Abdel-Hamid Amin ◽  
Sara T. Al-Rashood ◽  
Amal Alharbi ◽  
...  

Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.


2021 ◽  
Vol 7 (2) ◽  
pp. 28
Author(s):  
Camille S. Corre ◽  
Dietrich Matern ◽  
Joan E. Pellegrino ◽  
Carlos A. Saavedra-Matiz ◽  
Joseph J. Orsini ◽  
...  

Krabbe disease (KD) is a rare inherited neurodegenerative disorder caused by a deficiency in galactocerebrosidase enzyme activity, which can present in early infancy, requiring an urgent referral for hematopoietic stem cell transplantation, or later in life. Newborn screening (NBS) for KD requires identification and risk-stratification of patients based on laboratory values to predict disease onset in early infancy or later in life. The biomarker psychosine plays a key role in NBS algorithms to ascertain probability of early-onset disease. This report describes a patient who was screened positive for KD in New York State, had a likely pathogenic genotype, and showed markedly reduced enzyme activity but surprisingly low psychosine levels. The patient ultimately developed KD in late infancy, an outcome not clearly predicted by existing NBS algorithms. It remains critical that psychosine levels be evaluated alongside genotype, enzyme activity levels, and the patient’s evolving clinical presentation, ideally in consultation with experts in KD, in order to guide diagnosis and plans for monitoring.


2013 ◽  
Vol 454 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Patrick Masson ◽  
Sofya Lushchekina ◽  
Lawrence M. Schopfer ◽  
Oksana Lockridge

CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E′. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈108 M−1·min−1). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp70 in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E′, indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E′. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His438, leading to the less reactive form E′.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 3028-3034 ◽  
Author(s):  
Soohee Lee ◽  
Asim K. Debnath ◽  
Colvin M. Redman

Abstract In addition to its importance in transfusion, Kell protein is a member of the M13 family of zinc endopeptidases and functions as an endothelin-3–converting enzyme. To obtain information on the structure of Kell protein we built a model based on the crystal structure of the ectodomain of neutral endopeptidase 24.11 (NEP). Similar to NEP, the Kell protein has 2 globular domains consisting mostly of α-helical segments. The domain situated closest to the membrane contains both the N- and C-terminal sequences and the enzyme-active site. The outer domain contains all of the amino acids whose substitutions lead to different Kell blood group phenotypes. In the model, the zinc peptidase inhibitor, phosphoramidon, was docked in the active site. Site-directed mutagenesis of amino acids in the active site was performed and the enzymatic activities of expressed mutant Kell proteins analyzed and compared with NEP. Our studies indicate that Kell and NEP use the same homologous amino acids in the coordination of zinc and in peptide hydrolysis. However, Kell uses different amino acids than NEP in substrate binding and appears to have more flexibility in the composition of amino acids allowed in the active site.


2016 ◽  
Author(s):  
◽  
Kasi Viswanatharaju Ruddraraju

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Protein tyrosine phosphatase 1B (PTP1B) is a validated target for the treatment of type 2 diabetes and obesity. The discovery of selective inhibitors with drug-like properties has proven to be challenging because there are [about]80 PTP family members that share a similar and positively charged active site. To overcome these challenges, we have pursued two novel approaches for the covalent inactivation of PTP1B. Exo-affinity labeling agents exploit covalent reactions with amino acids outside the enzyme active site to gain both affinity and selectivity. We prepared several affinity labeling agents using a 12-step convergent synthesis. Enzyme assays revealed that some of these agents are capable of inactivating the enzyme by covalent modification. In another project, we prepared a low molecular weight mimic of the oxidized form of PTP1B that is generated in cells, during insulin signaling events. Seeking molecules capable of covalent capture of oxidized PTP1B, we treated this chemical model with several carbon nucleophiles, such as 1,3-diketones and sulfone-stabilized carbon anions. These carbon nucleophiles readily reacted with the model compound, under mild conditions to give stable adducts. Inactivation experiments revealed that 1,3-diketones are capable of inactivating the oxidized PTP1B at micromolar concentrations.


Sign in / Sign up

Export Citation Format

Share Document