scholarly journals Long-term heat-storage ceramics absorbing thermal energy from hot water

2020 ◽  
Vol 6 (27) ◽  
pp. eaaz5264
Author(s):  
Yoshitaka Nakamura ◽  
Yuki Sakai ◽  
Masaki Azuma ◽  
Shin-ichi Ohkoshi

In thermal and nuclear power plants, 70% of the generated thermal energy is lost as waste heat. The temperature of the waste heat is below the boiling temperature of water. Here, we show a long-term heat-storage material that absorbs heat energy at warm temperatures from 38°C (311 K) to 67°C (340 K). This unique series of material is composed of scandium-substituted lambda-trititanium-pentoxide (λ-ScxTi3−xO5). λ-ScxTi3−xO5 not only accumulates heat energy from hot water but also could release the accumulated heat energy by the application of pressure. λ-ScxTi3−xO5 has the potential to accumulate heat energy of hot water generated in thermal and nuclear power plants and to recycle the accumulated heat energy on demand by applying external pressure. Furthermore, it may be used to recycle waste heat in industrial factories and automobiles.

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Mauro Cappelli ◽  
Francesco Cordella ◽  
Francesco Bertoncini ◽  
Marco Raugi

Guided wave (GW) testing is regularly used for finding defect locations through long-range screening using low-frequency waves (from 5 to 250 kHz). By using magnetostrictive sensors, some issues, which usually limit the application to nuclear power plants (NPPs), can be fixed. The authors have already shown the basic theoretical background and simulation results concerning a real steel pipe, used for steam discharge, with a complex structure. On the basis of such theoretical framework, a new campaign has been designed and developed on the same pipe, and the obtained experimental results are now here presented as a useful benchmark for the application of GWs as nondestructive techniques. Experimental measures using a symmetrical probe and a local probe in different configurations (pulse-echo and pitch-catch) indicate that GW testing with magnetostrictive sensors can be reliably applied to long-term monitoring of NPPs components.


1979 ◽  
Vol 101 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Z. P. Tilliette ◽  
B. Pierre ◽  
P. F. Jude

The advantages of gas turbine power plants in general and closed cycle systems under gas pressure in particular for waste heat recovery are well known. A satisfactory efficiency for electric power generation and good conditions to obtain a significant amount of hot water above 100°C lead to a high fuel utilization. However, as in most of projects, it is not much possible to produce high temperature steam or water without significantly decreasing the electricity production. A new method for an additional generation of high quality process or domestic heat is proposed. The basic feature of this method lies in arranging one or two steam generators or preheaters in parallel with the low pressure side of the recuperator. The high total efficiency and the noteworthy flexibility of this system are emphasized. This arrangement is suitable for any kind of heat source, but the applications presented in this paper are related to helium direct cycle nuclear power plants the main features of which are a single 600 MW(e) turbomachine, a turbine inlet temperature of 775°C, no or one intermediate cooling and a primary circuit fully integrated in a pre-stressed concrete reactor vessel.


Author(s):  
Ronaldo Szilard ◽  
Hongbin Zhang

The current fleet of 104 nuclear power plants in the U.S. began their operation with 40 years operating licenses. About half of these plants have their licenses renewed to 60 years and most of the remaining plants are anticipated to pursue license extension to 60 years. With the superior performance of the current fleet and formidable costs of building new nuclear power plants, there has been significant interest to extend the lifetime of the current fleet even further from 60 years to 80 years. This paper addresses some of the key long term technical challenges and identifies R&D needs related to the long term safe and economic operation of the current fleet.


Author(s):  
Oliver Martin ◽  
Antonio Ballesteros ◽  
Christiane Bruynooghe ◽  
Michel Bie`th

The energy supply of the future in the EU will be a mix of renewable, fossil and nuclear. There are 145 nuclear power reactors in operation in 15 out of the 27 EU countries, with installed power ∼132 GWe. The age distribution of current nuclear power plants in EU is such that in 2010 most of them will have passed 20-years and approximately 25% of them 30 years of age. The decrease of energy supply from nuclear generated electricity can not always be compensated in a reliable and economical way within a short time span. For this situation utilities may be keen to upgrade the reactor output and /or to ask their regulatory bodies for longer term operation. Under the research financed in the Euratom part of the Research Directorate (RTD) of the European Commission several projects explicitly address the safe long term operation of nuclear power plants (NULIFE, LONGLIFE) and the topics proposed in the 2010 call explicitly address issues concerning component ageing, in particular non metallic components, i.e. instrumentation and cables (I&C) and concrete ageing. This paper presents an overview of the plans for long term operation (LTO) of nuclear power plants in the EU. Special emphasis is given on research activities on component ageing management and long term operation issues related to safety.


2020 ◽  
Vol 149 ◽  
pp. 107793
Author(s):  
Minyu Fan ◽  
Mingya Chen ◽  
Min Yu ◽  
Wenqing Jia ◽  
Yuanfei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document