scholarly journals GABAergic interneurons excite neonatal hippocampus in vivo

2020 ◽  
Vol 6 (24) ◽  
pp. eaba1430 ◽  
Author(s):  
Yasunobu Murata ◽  
Matthew T. Colonnese

GABAergic interneurons are proposed to be critical for early activity and synapse formation by directly exciting, rather than inhibiting, neurons in developing hippocampus and neocortex. However, the role of GABAergic neurons in the generation of neonatal network activity has not been tested in vivo, and recent studies have challenged the excitatory nature of early GABA. By locally manipulating interneuron activity in unanesthetized neonatal mice, we show that GABAergic neurons are excitatory in CA1 hippocampus at postnatal day 3 (P3) and are responsible for most of the spontaneous firing of pyramidal cells at that age. Hippocampal interneurons become inhibitory by P7, whereas visual cortex interneurons are already inhibitory by P3 and remain so throughout development. These regional and age-specific differences are the result of a change in chloride reversal potential, because direct activation of light-gated anion channels in glutamatergic neurons drives CA1 firing at P3, but silences it at P7 in CA1, and at all ages in visual cortex. This study in the intact brain reveals that GABAergic interneuron excitation is essential for network activity in neonatal hippocampus and confirms that visual cortical interneurons are inhibitory throughout early postnatal development.

2019 ◽  
Author(s):  
Yasunobu Murata ◽  
Matthew T. Colonnese

AbstractGABAergic interneurons are proposed to be critical for early activity and synapse formation by directly exciting, rather than inhibiting, neurons in developing hippocampus and neocortex. However, the role of GABAergic neurons in the generation of neonatal network activity has not been tested in vivo, and recent studies have challenged the excitatory nature of early GABA. By locally manipulating interneuron activity in unanesthetized neonatal mice, we show that GABAergic neurons are indeed excitatory in hippocampus at postnatal-day 3 (P3), and responsible for most of the spontaneous firing of pyramidal cells at that age. Hippocampal interneurons become inhibitory by P7, whereas cortical interneurons are inhibitory at P3 and remain so throughout development. This regional and age heterogeneity is the result of a change in chloride reversal potential as activation of light-gated anion channels expressed in glutamatergic neurons causes firing in hippocampus at P3, but silences it at P7. This study in the intact brain reveals a critical role for GABAergic interneuron excitation in neonatal hippocampus, and a surprising heterogeneity of interneuron function in cortical circuits that was not predicted from in vitro studies.


2018 ◽  
Author(s):  
Alejandro Pan-Vazquez ◽  
Winnie Wefelmeyer ◽  
Victoria Gonzalez Sabater ◽  
Juan Burrone

AbstractGABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex1,2. However, the rules that govern the wiring of interneurons are not well understood3. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS)4. Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. In this study, we investigated the role of activity in the formation and plasticity of ChC synapses. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window resulted in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the AIS showed that axo-axonic synapses were depolarising during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted in an increase in axo-axonic synapses. We propose that the direction of ChC plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.


2021 ◽  
Author(s):  
Jeremy T Chang ◽  
David Fitzpatrick

The visual cortex of carnivores and primates displays a high degree of modular network organization characterized by local clustering and structured long-range correlations of activity and functional properties. Excitatory networks display modular organization before the onset of sensory experience, but the developmental timeline for modular networks of GABAergic interneurons, remains under-explored. Using in vivo calcium imaging of the ferret visual cortex, we find evidence that before visual experience, interneurons display weak orientation tuning and widespread non-specific activation in response to visual stimuli. Modular organization and orientation tuning are evident with as little as one week of visual experience. Furthermore, we find that the development of orientation tuning requires visual experience, while the reduction in widespread network activity does not. Thus, the maturation of inhibitory cortical networks occurs in a delayed, parallel process relative to excitatory neurons.


2019 ◽  
Author(s):  
Paloma P Maldonado ◽  
Alvaro Nuno-Perez ◽  
Jan Kirchner ◽  
Elizabeth Hammock ◽  
Julijana Gjorgjieva ◽  
...  

SummarySpontaneous network activity shapes emerging neuronal circuits during early brain development, however how neuromodulation influences this activity is not fully understood. Here, we report that the neuromodulator oxytocin powerfully shapes spontaneous activity patterns. In vivo, oxytocin strongly decreased the frequency and pairwise correlations of spontaneous activity events in visual cortex (V1), but not in somatosensory cortex (S1). This differential effect was a consequence of oxytocin only increasing inhibition in V1 and increasing both inhibition and excitation in S1. The increase in inhibition was mediated by the depolarization and increase in excitability of somatostatin+ (SST) interneurons specifically. Accordingly, silencing SST+ neurons pharmacogenetically fully blocked oxytocin’s effect on inhibition in vitro as well its effect on spontaneous activity patterns in vivo. Thus, oxytocin decreases the excitatory/inhibitory ratio and modulates specific features of V1 spontaneous activity patterns that are crucial for refining developing synaptic connections and sensory processing later in life.


2005 ◽  
Vol 93 (6) ◽  
pp. 3504-3523 ◽  
Author(s):  
Kenji Morita ◽  
Kunichika Tsumoto ◽  
Kazuyuki Aihara

Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input–output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo–like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input–output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Richard Hakim ◽  
Kiarash Shamardani ◽  
Hillel Adesnik

Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex.


PLoS Biology ◽  
2014 ◽  
Vol 12 (8) ◽  
pp. e1001932 ◽  
Author(s):  
Rita Bopp ◽  
Nuno Maçarico da Costa ◽  
Björn M. Kampa ◽  
Kevan A. C. Martin ◽  
Morgane M. Roth

Author(s):  
Simon Weiler ◽  
Drago Guggiana Nilo ◽  
Tobias Bonhoeffer ◽  
Mark Hübener ◽  
Tobias Rose ◽  
...  

AbstractNeocortical pyramidal cells (PCs) display functional specializations defined by their excitatory and inhibitory circuit connectivity. For layer 2/3 (L2/3) PCs, little is known about the detailed relationship between their neuronal response properties, dendritic structure and their underlying circuit connectivity at the level of single cells. Here, we ask whether L2/3 PCs in mouse primary visual cortex (V1) differ in their functional intra- and interlaminar connectivity patterns, and how this relates to differences in visual response properties. Using a combined approach, we first characterized the orientation and direction tuning of individual L2/3 PCs with in vivo 2-photon calcium imaging. Subsequently, we performed excitatory and inhibitory synaptic input mapping of the same L2/3 PCs in brain slices using laser scanning photostimulation (LSPS).Our data from this structure-connectivity-function analysis show that the sources of excitatory and inhibitory synaptic input are different in their laminar origin and horizontal location with respect to cell position: On average, L2/3 PCs receive more inhibition than excitation from within L2/3, whereas excitation dominates input from L4 and L5. Horizontally, inhibitory input originates from locations closer to the horizontal position of the soma, while excitatory input arises from more distant locations in L4 and L5. In L2/3, the excitatory and inhibitory inputs spatially overlap on average. Importantly, at the level of individual neurons, PCs receive inputs from presynaptic cells located spatially offset, vertically and horizontally, relative to the soma. These input offsets show a systematic correlation with the preferred orientation of the postsynaptic L2/3 PC in vivo. Unexpectedly, this correlation is higher for inhibitory input offsets within L2/3 than for excitatory input offsets. When relating the dendritic complexity of L2/3 PCs to their orientation tuning, we find that sharply tuned cells have a less complex apical tree compared to broadly tuned cells. These results indicate that the spatial input offsets of the functional input connectivity are linked to orientation preference, while the orientation selectivity of L2/3 PCs is more related to the dendritic complexity.


2021 ◽  
Author(s):  
Tim J Viney ◽  
Barbara Sarkany ◽  
A Tugrul Ozdemir ◽  
Katja Hartwich ◽  
Judith Schweimer ◽  
...  

Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing pyramidal cells, with the remaining cells retaining their coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely-moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms implementing cortical neuronal coordination compensate for the widespread pTau aggregation, loss of high-firing cells and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document