scholarly journals Atomic-scale spin-polarization maps using functionalized superconducting probes

2021 ◽  
Vol 7 (4) ◽  
pp. eabd7302
Author(s):  
Lucas Schneider ◽  
Philip Beck ◽  
Jens Wiebe ◽  
Roland Wiesendanger

A scanning tunneling microscope (STM) with a magnetic tip that has a sufficiently strong spin polarization can be used to map the sample’s spin structure down to the atomic scale but usually lacks the possibility to absolutely determine the value of the sample’s spin polarization. Magnetic impurities in superconducting materials give rise to pairs of perfectly, i.e., 100%, spin-polarized subgap resonances. In this work, we functionalize the apex of a superconducting Nb STM tip with such impurity states by attaching Fe atoms to probe the spin polarization of atom-manipulated Mn nanomagnets on a Nb(110) surface. By comparison with spin-polarized STM measurements of the same nanomagnets using Cr bulk tips, we demonstrate an extraordinary spin sensitivity and the possibility to measure the sample’s spin-polarization values close to the Fermi level quantitatively with our new functionalized probes.

1991 ◽  
Vol 231 ◽  
Author(s):  
R. Wiesendanger ◽  
D. Buergler ◽  
G. Tarrach ◽  
I.V. Shvets ◽  
H.-J. Guentherodt

AbstractWe report on a novel promising technique for the investigation of magnetic structures at surfaces at high spatial resolution, ultimately down to the atomic scale. This technique is based on the observation of vacuum tunneling of spin-polarized electrons by means of a scanning tunneling microscope (STM). We discuss appropriate probe tips for the spin-polarized STM (SPSTM) and describe initial experimental results. We further focus on the information obtained by SPSTM. Finally, the perspectives of SPSTM will be discussed.


2003 ◽  
Vol 02 (04n05) ◽  
pp. 197-218
Author(s):  
K.-F. BRAUN ◽  
F. MORESCO ◽  
K. MORGENSTERN ◽  
S. FÖLSCH ◽  
J. REPP ◽  
...  

Controlled manipulations with scanning tunneling microscope (STM) down to the scale of small molecules and single atoms allow to build molecular and atomic nanosystems, leading to the fascinating possibility of creating manmade structures on atomic scale. Here we present a short review on investigations based on atomic scale manipulation. Upon soft lateral manipulation of adsorbed species, in which only tip/particle forces are used, three different manipulation modes can be discerned: pushing, pulling and sliding. Even the manipulation of strongly bound native substrate atoms is possible. We demonstrate applications as local analytic and synthetic chemistry tools, with important consequences on surface structure research. Vertical manipulation of Xe and CO leads to improved imaging with functionalized tips. With CO deliberately transferred to the tip, we have also succeeded to perform vibrational spectroscopy on single molecules. Furthermore, we describe how we have reproduced a full chemical reaction with single molecules, whereby all basic steps, namely preparation of the reactants, diffusion and association, are induced with the STM tip. Here also field and electron current effects are employed. Finally, we have extended the manipulation techniques to large specially designed molecules by performing lateral manipulation in constant height and realizing the principle of a conformational molecular switch. Artificial nanoscale structures built in atom by atom fashion can serve as quantum laboratories for investigations of various physical properties.


Nano Letters ◽  
2010 ◽  
Vol 10 (10) ◽  
pp. 3857-3862 ◽  
Author(s):  
Damien Riedel ◽  
Roger Delattre ◽  
Andrey G. Borisov ◽  
Tatiana V. Teperik

1997 ◽  
Vol 386 (1-3) ◽  
pp. 311-314 ◽  
Author(s):  
Zhanghua Wu ◽  
Tomonobu Nakayama ◽  
Makoto Sakurai ◽  
Masakazu Aono

Sign in / Sign up

Export Citation Format

Share Document