scholarly journals Optical switching of topological phase in a perovskite polariton lattice

2021 ◽  
Vol 7 (21) ◽  
pp. eabf8049
Author(s):  
Rui Su ◽  
Sanjib Ghosh ◽  
Timothy C. H. Liew ◽  
Qihua Xiong

Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.

Nano Letters ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 4689-4697 ◽  
Author(s):  
Jinxiu Wen ◽  
Hao Wang ◽  
Weiliang Wang ◽  
Zexiang Deng ◽  
Chao Zhuang ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fabio Scafirimuto ◽  
Darius Urbonas ◽  
Michael A. Becker ◽  
Ullrich Scherf ◽  
Rainer F. Mahrt ◽  
...  

AbstractMicrocavities with embedded optically active materials allow to create exciton–polariton condensates in the strong light–matter interaction regime. These condensates exhibit quantum fluid properties up to room temperature, and, when crystal-like lattices are imprinted in the cavity, they can be used to emulate and study solid-state physics toy models. Here, we demonstrate room temperature polariton condensation in a nano-fabricated two-dimensional Lieb lattice with an organic polymer. We exploit the tunability of our open cavity to selectively condense into the s-, p- and d-lattice band manifolds. Furthermore, we interferometrically measure long-range first-order coherence across the lattice and assess the influence of the disorder in the system. These are key first steps to investigate extended topological polariton systems at ambient conditions.


2020 ◽  
Author(s):  
Yunfei Zou ◽  
Gang Song ◽  
Naien Wang ◽  
Li Yu

Abstract Plasmonic nanocavity has been an excellent platform to study light matter interaction under ambient conditions and within sub-diffraction volumes. However, controlled strong light matter interaction in the plasmonic system has rarely been reported. Here, we design a plasmonic tweezers, which can trap a molecular J-aggregates, and be a plasmonic cavity to investigate the strong light matter interaction. We use finite-difference time-domain methods and Maxwell stress tensor to evaluate the optical response and the trapping performance. With the help of coupled oscillator model and virtual excitons theory, we analyze the strong coupling progress in lower excitons system, we further introduce a `coupling force' parameter to characterize the relationship between the optical force and model volume in the coupling system. The proposed method offers a way to locate a molecular J-aggregates in a plasmonic tweezers for investigating optical force performance and strong light matter interaction.


Nanoscale ◽  
2019 ◽  
Vol 11 (19) ◽  
pp. 9574-9579 ◽  
Author(s):  
Mateusz Król ◽  
Katarzyna Lekenta ◽  
Rafał Mirek ◽  
Karolina Łempicka ◽  
Daniel Stephan ◽  
...  

Strong light–matter interaction between cavity photons and excitons in monolayer WSe2 with spin selective excitation is demonstrated.


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 435-451 ◽  
Author(s):  
Taehee Kang ◽  
Young-Mi Bahk ◽  
Dai-Sik Kim

AbstractThrough the manipulation of metallic structures, light–matter interaction can enter into the realm of quantum mechanics. For example, intense terahertz pulses illuminating a metallic nanotip can promote terahertz field–driven electron tunneling to generate enormous electron emission currents in a subpicosecond time scale. By decreasing the dimension of the metallic structures down to the nanoscale and angstrom scale, one can obtain a strong field enhancement of the incoming terahertz field to achieve atomic field strength of the order of V/nm, driving electrons in the metal into tunneling regime by overcoming the potential barrier. Therefore, designing and optimizing the metal structure for high field enhancement are an essential step for studying the quantum phenomena with terahertz light. In this review, we present several types of metallic structures that can enhance the coupling of incoming terahertz pulses with the metals, leading to a strong modification of the potential barriers by the terahertz electric fields. Extreme nonlinear responses are expected, providing opportunities for the terahertz light for the strong light–matter interaction. Starting from a brief review about the terahertz field enhancement on the metallic structures, a few examples including metallic tips, dipole antenna, and metal nanogaps are introduced for boosting the quantum phenomena. The emerging techniques to control the electron tunneling driven by the terahertz pulse have a direct impact on the ultrafast science and on the realization of next-generation quantum devices.


2021 ◽  
Author(s):  
Akshay Rao ◽  
Raj Pandya ◽  
Richard Chen ◽  
Qifei Gu ◽  
Jooyoug Sung ◽  
...  

Abstract Exciton-polaritons (EPs) are quasiparticles formed by the hybridization of excitons with light modes. As organic semiconductors sustain stable excitons at room-temperature, these materials are being actively studied for room temperature polaritonic devices1–3. This is typically in the form of cavity-based systems, where molecules are confined between metallic or dielectric mirrors 4–6 or in a plasmonic gap 7,8. In such systems strong light-matter coupling gives rise to polariton splittings on the order of 200 to 300 meV 6. A wide range of phenomena have been demonstrated in cavity-polariton systems including super-fluidity9, precisely controlled chemical reactions10 and long-range energy propagation11. Here, using a range of chemically diverse model organic systems we show that interactions between excitons and moderately confined photonic states within the (thin) film can lead to the formation of EPs, with a defined lifetime, even in the absence of external cavities. We demonstrate the presence of EPs via angular dependent splittings in reflectivity spectra on the order of 30 meV and collective emission from ~5 ×107 coupled molecules. Additionally, we show that at room temperature these EPs can transport energy up to ~270 nm at velocities of ~5 ×106 m s-1. This propagation velocity and distance is sensitive to, and can be tuned by, the refractive index of the external environment. However, although sensitive to the nanoscale morphology the formation of the exciton-polariton states is a general phenomenon, independent of underlying materials chemistry, with the principal material requirements being a high oscillator strength per unit volume and low disorder. These results and design rules will enable the harnessing of EP effects for a new application in optoelectronics, light harvesting 9,12,13 and cavity controlled chemistry without the limiting requirement of an external cavity.


2013 ◽  
Vol 21 (26) ◽  
pp. 32572 ◽  
Author(s):  
A. Benz ◽  
S. Campione ◽  
S. Liu ◽  
I. Montano ◽  
J. F. Klem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document