scholarly journals Ozone depletion due to dust release of iodine in the free troposphere

2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Theodore K. Koenig ◽  
Rainer Volkamer ◽  
Eric C. Apel ◽  
James F. Bresch ◽  
Carlos A. Cuevas ◽  
...  
Science News ◽  
1995 ◽  
Vol 148 (17) ◽  
pp. 262
Author(s):  
R. Lipkin
Keyword(s):  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sergey Osipov ◽  
Georgiy Stenchikov ◽  
Kostas Tsigaridis ◽  
Allegra N. LeGrande ◽  
Susanne E. Bauer ◽  
...  

AbstractSupervolcano eruptions have occurred throughout Earth’s history and have major environmental impacts. These impacts are mostly associated with the attenuation of visible sunlight by stratospheric sulfate aerosols, which causes cooling and deceleration of the water cycle. Supereruptions have been assumed to cause so-called volcanic winters that act as primary evolutionary factors through ecosystem disruption and famine, however, winter conditions alone may not be sufficient to cause such disruption. Here we use Earth system model simulations to show that stratospheric sulfur emissions from the Toba supereruption 74,000 years ago caused severe stratospheric ozone loss through a radiation attenuation mechanism that only moderately depends on the emission magnitude. The Toba plume strongly inhibited oxygen photolysis, suppressing ozone formation in the tropics, where exceptionally depleted ozone conditions persisted for over a year. This effect, when combined with volcanic winter in the extra-tropics, can account for the impacts of supereruptions on ecosystems and humanity.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 291
Author(s):  
Jinpeng Lu ◽  
Fei Xie ◽  
Hongying Tian ◽  
Jiali Luo

Stratospheric water vapor (SWV) changes play an important role in regulating global climate change, and its variations are controlled by tropopause temperature. This study estimates the impacts of tropopause layer ozone changes on tropopause temperature by radiative process and further influences on lower stratospheric water vapor (LSWV) using the Whole Atmosphere Community Climate Model (WACCM4). It is found that a 10% depletion in global (mid-low and polar latitudes) tropopause layer ozone causes a significant cooling of the tropical cold-point tropopause with a maximum cooling of 0.3 K, and a corresponding reduction in LSWV with a maximum value of 0.06 ppmv. The depletion of tropopause layer ozone at mid-low latitudes results in cooling of the tropical cold-point tropopause by radiative processes and a corresponding LSWV reduction. However, the effect of polar tropopause layer ozone depletion on tropical cold-point tropopause temperature and LSWV is opposite to and weaker than the effect of tropopause layer ozone depletion at mid-low latitudes. Finally, the joint effect of tropopause layer ozone depletion (at mid-low and polar latitudes) causes a negative cold-point tropopause temperature and a decreased tropical LSWV. Conversely, the impact of a 10% increase in global tropopause layer ozone on LSWV is exactly the opposite of the impact of ozone depletion. After 2000, tropopause layer ozone decreased at mid-low latitudes and increased at high latitudes. These tropopause layer ozone changes at different latitudes cause joint cooling in the tropical cold-point tropopause and a reduction in LSWV. Clarifying the impacts of tropopause layer ozone changes on LSWV clearly is important for understanding and predicting SWV changes in the context of future global ozone recovery.


Sign in / Sign up

Export Citation Format

Share Document