Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry

Science ◽  
2008 ◽  
Vol 321 (5891) ◽  
pp. 949-952 ◽  
Author(s):  
D. E. Canfield ◽  
S. W. Poulton ◽  
A. H. Knoll ◽  
G. M. Narbonne ◽  
G. Ross ◽  
...  
Keyword(s):  
2018 ◽  
Vol 37 (1) ◽  
pp. 25-71 ◽  
Author(s):  
Rowan Dejardin ◽  
Sev Kender ◽  
Claire S. Allen ◽  
Melanie J. Leng ◽  
George E. A. Swann ◽  
...  

Abstract. It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat–stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living (Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living, infaunal species, we speculate that they may actually calcify predominantly at the sediment–seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Sign in / Sign up

Export Citation Format

Share Document