A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

Science ◽  
2009 ◽  
Vol 325 (5942) ◽  
pp. 848-852 ◽  
Author(s):  
A. A. Abdo ◽  
M. Ackermann ◽  
M. Ajello ◽  
W. B. Atwood ◽  
M. Axelsson ◽  
...  
2012 ◽  
Vol 8 (S291) ◽  
pp. 87-92
Author(s):  
L. Guillemot

AbstractObservations of pulsars with the Large Area Telescope (LAT) on the Fermi satellite have revolutionized our view of the gamma-ray pulsar population. For the first time, a large number of young gamma-ray pulsars have been discovered in blind searches of the LAT data. More generally, the LAT has discovered many new gamma-ray sources whose properties suggest that they are powered by unknown pulsars. Radio observations of gamma-ray sources have been key to the success of pulsar studies with the LAT. For example, radio observations of LAT-discovered pulsars provide constraints on the relative beaming fractions, which are crucial for pulsar population studies. Also, radio searches of LAT sources with no known counterparts have been very efficient, with the discovery of over forty millisecond pulsars. I review radio follow-up studies of LAT-discovered pulsars and unidentified sources, and discuss some of the implications of the results.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 31
Author(s):  
Xuejie Dai ◽  
Zhongxiang Wang ◽  
Jithesh Vadakkumthani

We are starting a project to find γ -ray millisecond pulsars (MSPs) among the unidentified sources detected by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope (Fermi), by radio observations. The selection of good candidates from analysis of the LAT data is an important part of the project. Given that there is more than 10 years worth of LAT data and the advent of the newly released LAT 8-year point source list (FL8Y), we have conducted a selection analysis, on the basis of our previous analysis, and report the results here. Setting the requirements for the unidentified sources in FL8Y of Galactic latitudes | b | > 5 ∘ and curvature significances >3 σ , there are 202 sources with detection signficances >6 σ . We select 57 relatively bright ones (detection significances >15 σ ) and analyze their 10.2 years of LAT data. Their variability is checked to exclude variable sources (likely blazars), test statistic maps are constructed to avoid contaminated sources, and curvature significances are re-obtained and compared to their γ -ray spectra to exclude non-significant sources. In the end, 48 candidates are found. Based on the available information, mostly from multi-wavelength studies, we discuss the possible nature of several of the candidates. Most of these candidates are currently being observed with the 65-meter Shanghai Tian Ma Radio Telescope.


2013 ◽  
Vol 430 (1) ◽  
pp. 571-587 ◽  
Author(s):  
C. M. Espinoza ◽  
L. Guillemot ◽  
Ö. Çelik ◽  
P. Weltevrede ◽  
B. W. Stappers ◽  
...  

2019 ◽  
Vol 488 (3) ◽  
pp. 4288-4306
Author(s):  
Shan Chang ◽  
Li Zhang ◽  
Xiang Li ◽  
Zejun Jiang

ABSTRACT Pulsed γ-ray properties of 22 millisecond pulsars (MSPs) with double peaks are studied in the revised versions of the outer gap (OG) and the stripped wind (SW) models. The major differences between these two models are magnetic field structures, γ-ray production sites, and radiation mechanisms. In the models, γ-ray light curves of these MSPs are calculated through a Markov chain Monte Carlo (MCMC) method to pick best-fitting model parameters. Our results indicate that (1) both models can reproduce observed double-peak structures of the MSPs well, for most MSPs, a relatively large magnetic inclination angle (α ∼ 50°–90°) and small viewing angle (ζ ∼ 30°–90°) are obtained in the OG model, but a relatively small α ∈ (20°, 60°) and large ζ ∈ (70°, 150°) in the SW model; (2) phase-averaged spectra, cut-off energy, and γ-ray luminosity calculated in both models are consistent with observed those by Fermi-Large Area Telescope (LAT). Therefore, it may be concluded that the OG and the SW models for describing high-energy emissions of MSPs cannot be ruled out at present, and further studies are required.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1432
Author(s):  
Dmitry O. Chernyshov ◽  
Andrei E. Egorov ◽  
Vladimir A. Dogiel ◽  
Alexei V. Ivlev

Recent observations of gamma rays with the Fermi Large Area Telescope (LAT) in the direction of the inner galaxy revealed a mysterious excess of GeV. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are that it is due to either spherically distributed annihilating dark matter (DM) or an abnormal population of millisecond pulsars. We suggest an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ∼10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the “barrier” near the cloud edge formed by the self-excited MHD turbulence. This depletion of CRs inside the clouds may be a reason for the deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below a few GeV. This in turn changes the ratio between various emission components at those energies and may potentially absorb the GeV excess by a simple renormalization of key components.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2010 ◽  
Vol 718 (1) ◽  
pp. L14-L18 ◽  
Author(s):  
C. A. Swenson ◽  
A. Maxham ◽  
P. W. A. Roming ◽  
P. Schady ◽  
L. Vetere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document