Loss of Sebaceous Glands in Skin of Thiamine-Deficient Mice

Science ◽  
1956 ◽  
Vol 123 (3198) ◽  
pp. 634-635 ◽  
Author(s):  
T. S. ARGYRIS
2014 ◽  
Vol 461 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Philipp Ebel ◽  
Silke Imgrund ◽  
Katharina vom Dorp ◽  
Kristina Hofmann ◽  
Helena Maier ◽  
...  

Ceramide synthase 4 (CerS4)-deficient mice exhibit altered lipid composition in sebum, hair follicle dystrophy and progressing alopecia. Normal function of the sebaceous glands is disrupted, thus CerS4 is essential for the synthesis of functionally normal sebum and hair follicle homoeostasis.


Science ◽  
1956 ◽  
Vol 123 (3198) ◽  
pp. 634-635
Author(s):  
Thomas S. Argyris

2016 ◽  
Vol 84 (1) ◽  
pp. e152
Author(s):  
Toru Atsugi ◽  
Mariko Yokouchi ◽  
Ai Hirabayashi ◽  
Manabu Ohyama ◽  
Masayuki Amagai ◽  
...  

2004 ◽  
Vol 24 (4) ◽  
pp. 1608-1613 ◽  
Author(s):  
Kim Newton ◽  
Dorothy M. French ◽  
Minhong Yan ◽  
Gretchen D. Frantz ◽  
Vishva M. Dixit

ABSTRACT EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.


2006 ◽  
Vol 26 (18) ◽  
pp. 6957-6970 ◽  
Author(s):  
Anna Chrostek ◽  
Xunwei Wu ◽  
Fabio Quondamatteo ◽  
Rong Hu ◽  
Anna Sanecka ◽  
...  

ABSTRACT Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and α6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.


Author(s):  
H. Nishimura ◽  
R Nishimura ◽  
D.L. Adelson ◽  
A.E. Michaelska ◽  
K.H.A. Choo ◽  
...  

Metallothionein (MT), a cysteine-rich heavy metal binding protein, has several isoforms designated from I to IV. Its major isoforms, I and II, can be induced by heavy metals like cadmium (Cd) and, are present in various organs of man and animals. Rodent testes are a critical organ to Cd and it is still a controversial matter whether MT exists in the testis although it is clear that MT is not induced by Cd in this tissue. MT-IV mRNA was found to localize within tongue squamous epithelium. Whether MT-III is present mainly glial cells or neurons has become a debatable topic. In the present study, we have utilized MT-I and II gene targeted mice and compared MT localization in various tissues from both MT-deficient mice and C57Black/6J mice (C57BL) which were used as an MT-positive control. For MT immunostaining, we have used rabbit antiserum against rat MT-I known to cross-react with mammalian MT-I and II and human MT-III. Immunohistochemical staining was conducted by the method described in the previous paper with a slight modification after the tissues were fixed in HistoChoice and embedded in paraffin.


2000 ◽  
Vol 52 (6) ◽  
pp. 555-562 ◽  
Author(s):  
I. Nepomnaschy ◽  
G. Lombardi ◽  
P. Bekinschtein ◽  
P. Berguer ◽  
V. Francisco ◽  
...  

2002 ◽  
Vol 89 (1) ◽  
pp. 113-118 ◽  
Author(s):  
J.E. Bartlett ◽  
S.M.Y. Lee ◽  
Y. Mishina ◽  
R.R. Behringer ◽  
N. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document