Molecular Diversity of the Ribulose-1,5-Diphosphate Carboxylase from Photosynthetic Microorganisms

Science ◽  
1968 ◽  
Vol 161 (3840) ◽  
pp. 482-484 ◽  
Author(s):  
L. E. Anderson ◽  
G. B. Price ◽  
R. C. Fuller
Author(s):  
Justine Demay ◽  
Cécile Bernard ◽  
Anita Reinhardt ◽  
Benjamin Marie

Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products (molecules, metabolites, or compounds) that they synthesize support the cyanobacterial success for the colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential for various fields of application (e.g., synthetic analog of the dolastatin 10 used against Hodgkin lymphoma). The present review specially focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been found to produce compounds with potential beneficial activities, most of them belonging to the orders Oscillatoriales, Nostocales Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial molecules presenting beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relation between the chemical class and the bioactivity of these molecules has been demonstrated. We further selected and specifically described 50 molecule families according to their specific bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. This up-to-date review takes advantage of the recent progresses in genome sequencing and biosynthetic pathway elucidation, and presents new perspectives for the rational discovery of new cyanobacterial metabolites with beneficial bioactivity.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 320 ◽  
Author(s):  
Justine Demay ◽  
Cécile Bernard ◽  
Anita Reinhardt ◽  
Benjamin Marie

Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin’s lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.


2020 ◽  
Vol 67 (4) ◽  
pp. 286 ◽  
Author(s):  
Iwona Jasser ◽  
Iwona Kostrzewska-Szlakowska ◽  
Jan Kwiatowski ◽  
Dovutsho Navruzshoev ◽  
Małgorzata Suska-Malawska ◽  
...  

Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Suraj N. Mali

: 1,8-diaminonaphthalene (1,8-DAN) with special organic structure was applied in organic synthesis to provide efficient complex scaffolds, through the two or four-component fashion. This review highlights its recent application in organic reactions under different conditions and heterogynous catalysts to produce various molecules, which were used as medicines, sensors, and dyes.


2014 ◽  
Vol 11 (3) ◽  
pp. 342-360 ◽  
Author(s):  
Ana Gomez ◽  
Clara Uriel ◽  
Fernando Lobo ◽  
Jose Lopez
Keyword(s):  

1978 ◽  
Vol 28 (1) ◽  
pp. 300-313 ◽  
Author(s):  
M L Bryant ◽  
C J Sherr ◽  
A Sen ◽  
G J Todaro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document