scholarly journals Natural Products from Cyanobacteria: Focus on Beneficial Activities

Author(s):  
Justine Demay ◽  
Cécile Bernard ◽  
Anita Reinhardt ◽  
Benjamin Marie

Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products (molecules, metabolites, or compounds) that they synthesize support the cyanobacterial success for the colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential for various fields of application (e.g., synthetic analog of the dolastatin 10 used against Hodgkin lymphoma). The present review specially focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been found to produce compounds with potential beneficial activities, most of them belonging to the orders Oscillatoriales, Nostocales Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial molecules presenting beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relation between the chemical class and the bioactivity of these molecules has been demonstrated. We further selected and specifically described 50 molecule families according to their specific bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. This up-to-date review takes advantage of the recent progresses in genome sequencing and biosynthetic pathway elucidation, and presents new perspectives for the rational discovery of new cyanobacterial metabolites with beneficial bioactivity.

Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 320 ◽  
Author(s):  
Justine Demay ◽  
Cécile Bernard ◽  
Anita Reinhardt ◽  
Benjamin Marie

Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin’s lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2835
Author(s):  
Slim Smaoui ◽  
Mohamed Barkallah ◽  
Hajer Ben Hlima ◽  
Imen Fendri ◽  
Amin Mousavi Khaneghah ◽  
...  

In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.


2021 ◽  
Author(s):  
Jiawang Liu ◽  
Anan Liu ◽  
Youcai Hu

Cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other enzymes were utilized to catalyze varied dimerization of matured natural products so as to create the structural diversity and complexity in microorganisms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joelle Ngo Hanna ◽  
Boris D. Bekono ◽  
Luc C. O. Owono ◽  
Flavien A. A. Toze ◽  
James A. Mbah ◽  
...  

Abstract In the quest to know why natural products (NPs) have often been considered as privileged scaffolds for drug discovery purposes, many investigations into the differences between NPs and synthetic compounds have been carried out. Several attempts to answer this question have led to the investigation of the atomic composition, scaffolds and functional groups (FGs) of NPs, in comparison with synthetic drugs analysis. This chapter briefly describes an atomic enumeration method for chemical libraries that has been applied for the analysis of NP libraries, followed by a description of the main differences between NPs of marine and terrestrial origin in terms of their general physicochemical properties, most common scaffolds and “drug-likeness” properties. The last parts of the work describe an analysis of scaffolds and FGs common in NP libraries, focusing on huge NP databases, e.g. those in the Dictionary of Natural Products (DNP), NPs from cyanobacteria and the largest chemical class of NP – terpenoids.


2021 ◽  
Vol 85 (1) ◽  
pp. 42-52
Author(s):  
Taro Shiraishi ◽  
Tomohisa Kuzuyama

Abstract Phosphonates are organophosphorus compounds possessing a characteristic C−P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C–P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.


mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ryo Yoshida ◽  
Hisashi Hemmi

Abstract Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 165 ◽  
Author(s):  
Ruma Raghuvanshi ◽  
Allyssa G. Grayson ◽  
Isabella Schena ◽  
Onyebuchi Amanze ◽  
Kezia Suwintono ◽  
...  

Fermenting food is an ancient form of preservation ingrained many in human societies around the world. Westernized diets have moved away from such practices, but even in these cultures, fermented foods are seeing a resurgent interested due to their believed health benefits. Here, we analyze the microbiome and metabolome of organically fermented vegetables, using a salt brine, which is a common ‘at-home’ method of food fermentation. We found that the natural microbial fermentation had a strong effect on the food metabolites, where all four foods (beet, carrot, peppers and radishes) changed through time, with a peak in molecular diversity after 2–3 days and a decrease in diversity during the final stages of the 4-day process. The microbiome of all foods showed a stark transition from one that resembled a soil community to one dominated by Enterobacteriaceae, such as Erwinia spp., within a single day of fermentation and increasing amounts of Lactobacillales through the fermentation process. With particular attention to plant natural products, we observed significant transformations of polyphenols, triterpenoids and anthocyanins, but the degree of this metabolism depended on the food type. Beets, radishes and peppers saw an increase in the abundance of these compounds as the fermentation proceeded, but carrots saw a decrease through time. This study showed that organically fermenting vegetables markedly changed their chemistry and microbiology but resulted in high abundance of Enterobacteriaceae which are not normally considered as probiotics. The release of beneficial plant specialized metabolites was observed, but this depended on the fermented vegetable.


2019 ◽  
Vol 17 (3) ◽  
pp. 454-460 ◽  
Author(s):  
Xuan Yun ◽  
Qian Zhang ◽  
Meinan Lv ◽  
Hai Deng ◽  
Zixin Deng ◽  
...  

Four enzymes direct the biosynthesis of 3-hydroxypicolinic acid, an important building block of bacterial natural products.


Sign in / Sign up

Export Citation Format

Share Document