Morphological and Molecular Diversity of Benthic Cyanobacteria Communities Versus Environmental Conditions in Shallow, High Mountain Water Bodies in Eastern Pamir Mountains (Tajikistan)

2020 ◽  
Vol 67 (4) ◽  
pp. 286 ◽  
Author(s):  
Iwona Jasser ◽  
Iwona Kostrzewska-Szlakowska ◽  
Jan Kwiatowski ◽  
Dovutsho Navruzshoev ◽  
Małgorzata Suska-Malawska ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2019 ◽  
Vol 46 (1) ◽  
pp. 16-23
Author(s):  
Jan Kavan ◽  
Veronika Anděrová

AbstractA new non-invasive method based on picture analysis was used to estimate the conditions in Svalbard reindeer populations. The well-being of an individual subject is often expressed through visual indices. Two distinct reindeer populations were compared based on their antler parameters. Relative antler size and number of tines are variables supposed to reflect correspondingly the environmental conditions of sedentary populations within the growing season. The occurrence areas of two studied populations are distinctly isolated – separated with high mountain ridges, glaciers and fjords. The population in Petuniabukta occupies a sparsely vegetated region with harsh climatic conditions, whereas Skansbukta represents an area with continuous tundra vegetation cover, milder climatic conditions and, consequently, also a longer vegetation season. These environmental factors probably caused significant differences in the relative antler size and number of tines in the studied species. The Skansbukta population exhibited a larger relative antler size and higher number of tines than the population in Petuniabukta (both parameters differed significantly, p < 0.01). This difference reflects concisely the different environmental conditions of both locations. A comparison of Skansbukta population antler characteristics between years 2017 and 2018 did not reveal significant changes, most probably due to very similar atmospheric conditions in these two years (in terms of air temperature).


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3063
Author(s):  
Anton A. Zharov ◽  
Anna N. Neretina ◽  
D. Christopher Rogers ◽  
Svetlana A. Reshetova ◽  
Sofia M. Sinitsa ◽  
...  

Pleistocene water bodies have been studied using the paleolimnological approach, which traces environmental changes using particular subfossils as ecological proxies, rather than analysis of the paleocommunities themselves. Within a given taphocoenosis, the presence and quantity of animals are related to environmental conditions rather than to community types where relationships between taxa are stabilized during their long-term co-occurrence and are (at least partially) more important than the particular environmental conditions at the time of deposition, which may have experienced significant seasonal and inter-seasonal variations. Here, we analyze Branchiopoda (Crustacea) of two paleolocalities in the Transbaikalian Region of Russia: Urtuy (MIS3) and Nozhiy (older than 1.5 million years). Cladocerans Daphnia (Ctenodaphnia) magna, D. (C.) similis, D. (Daphnia) pulex, Ceriodaphnia pulchella-reticulata, C. laticaudata, Simocephalus sp., Moina cf. brachiata, M. macropopa clade, Chydorus cf. sphaericus, Capmtocercus sp. and anostracans Branchinecta cf. paludosa, and Streptocephalus (Streptocephalus) sp. are found in two localities. With the exception of the last taxon, which now occurs in the southern Holarctic, all other taxa inhabit the Transbaikalian Region. Within Eurasia, the steppe zone has the greatest diversity of large branchiopods and a high diversity of some cladocerans, such as subgenus Daphnia (Ctenodaphnia) and Moina sp. Here we demonstrated that the branchiopod community in shallow steppe water bodies has been unchanged since at least the Pleistocene, demonstrating long-term morphological and ecological stasis.


2017 ◽  
Vol 92 (5) ◽  
pp. 549-553 ◽  
Author(s):  
B. Fitte ◽  
M.R. Robles ◽  
A. Dellarupe ◽  
J.M. Unzaga ◽  
G.T. Navone

AbstractThe aim of this survey was to study two Hymenolepididae species in urban rodents, Rattus rattus and Rattus norvegicus, and to analyse factors that favour their presence in the environment and pose a sanitary risk. Hymenolepis diminuta and Rodentolepis nana were found in R. rattus and R. norvegicus in different proportions. Values of prevalence, mean abundance and mean intensity were recorded, and new morphometric characters were described, adding to previously known information. No significant differences were found. However, the results revealed that there is a tendency for these parasites to develop in areas with deficient socio-structural conditions and in water bodies. This study thereby shows that certain areas on the periphery of the Gran La Plata favour the existence of rodents, which act as sentinels of zoonotic diseases, and stresses the need to take action to minimize them in order to avoid putting human and animal health at risk.


Author(s):  
Janusz Golski ◽  
Piotr Pińskwar ◽  
Maria Jezierska-Madziar ◽  
Wojciech Andrzejewski ◽  
Jan Mazurkiewicz ◽  
...  

AbstractOxbow lakes are typical elements of meandering watercourses and are considered to be key components of floodplains of natural rivers. A permanent connection with the river promotes the use of these water bodies by ichthyofauna as spawning grounds, shelter for fry, feeding and wintering grounds. The aim of this study was to determine which rheophilic species inhabit oxbow lakes and how environmental conditions affect habitat selection and fish behavior. Analyses were conducted on six oxbow lakes of the Warta River in the Koło-Poznań section. Fish and water samples were collected for three years, in spring, summer and late autumn. Variation in environmental conditions in the analyzed water bodies results in a considerable diversity of the ichthyofauna, including rheophilic species, in individual seasons of the year. In the course of the study, nine rheophilic fish species were recorded, including four from the lithophilic reproductive guild having the highest environmental requirements. Relative abundance of rheophilic species in the dominance structure ranged from 0 to 100%, depending on the reservoir and seasons, with an average of 7% for all catches. For comparison, their relative abundance in the adjacent parts of the river was 12 and 23%.


2018 ◽  
Vol 15 (1) ◽  
pp. 225 ◽  
Author(s):  
Erkan Yılmaz ◽  
İhsan Çiçek

Turkey is situated in the temperate zone as the macro climate zone. The fact that it remains under the influence of different air masses in every season due to its mathematical position causes differences are experienced in terms of the climate types. Besides its mathematical position, its special position also causes this influence grows stronger and the differences become clear much more. The fact that it is surrounded with seas from three sides, there are high mountain ranges in its northern and southern, its altitude increases from the west to the east, the roughness is high due to the tectonic effects and river erosion cause different climate types are dominant. The distribution of the dispersion areas of these climate types can be made by means of various climate classifications. Köppen-Geiger climate classification is a classification which is used at most in the world and which is used in the comparison of the past environmental conditions and the current environmental conditions and in the comparison of the future climate differences with our present day. Even if the dispersion areas of the climate types are shown according to Köppen-Geiger climate classification by different researchers at global scale, these classifications cannot reflect the diversity in Turkey in the exact manner due to the lack of data and scale problem. In this study, the monthly average temperature and monthly average total precipitation data of 249 meteorological station associated to the General Directorate of Meteorology and the global monthly average temperature and monthly average total precipitation data of the model printouts having 30-minute (approximately 1 km) resolution were used for the purpose of revealing the climate types which are dominant in Turkey according to Köppen-Geiger climate classification. Two different Köppen-Geiger climate types distribution maps were created depending on these two different data set. According to Köppen-Geiger climate classification, it was revealed that there are 13 different Köppen-Geiger climate zones in Turkey. According to this classification, the Mediterranean coasts were revealed to be in the "temperate-dry-hot summer climate- Csa" class, Konya Region and the southern of the Southeast Anatolia was revealed to be of the "dry-hot and cold steppe climate - Bsh-k" type and ET, that's tundra areas were designated in the Northeast Anatolia and Ararat Mountain. Köppen-Geiger climate zones of Turkey which were produced at low resolution in the previous studies were detailed much more in this study.Extended English summary is in the end of Full Text PDF (TURKISH) file. ÖzetTürkiye, makro iklim bölgesi olarak ılıman kuşakta yer almaktadır. Matematik konumu nedeniyle her mevsimde farklı hava kütlelerinin etkisi altında kalması iklim tipleri bakımından farklılıkların yaşanmasına neden olmaktadır. Matematik konumu yanında özel konumu da bu etkinin kuvvetlenmesine ve farklıkların daha da belirginleşmesine neden olur. Üç tarafının denizlerde çevrili olması, kuzey ve güneyinde yüksek dağ sıralarının bulunması, yükseltisinin batıdan doğuya doğru artması, tektonik etkiler ve akarsu aşındırması nedeniyle engebenin fazla olması kısa mesafelerde farklı iklim tiplerinin hüküm sürmesine neden olmaktadır. Bu iklim tiplerinin yayılış alanlarının dağılışı, çeşitli iklim sınıflandırmaları ile yapılabilmektedir. Köppen-Geiger iklim tasnifi, dünyada en fazla kullanılan, geçmiş ortam şartları ile günümüz ortam şartlarının karşılaştırılmasında ve gelecekteki iklim farklılıklarının günümüzle karşılaştırılmasında kullanılan bir sınıflandırmadır. Küresel ölçekte farklı araştırmacılar tarafından Köppen-Geiger iklim sınıflandırmasına göre iklim tiplerinin yayılış alanları gösterilse bile bu sınıflandırmalar veri yetersizliği ve ölçek problemi nedeniyle Türkiye’deki çeşitliliği tam yansıtamamaktadır. Bu çalışmada Köppen-Geiger iklim sınıflandırmasına göre Türkiye’de hüküm süren ikim tiplerini ortaya koymak amacıyla Meteoroloji Genel Müdürlüğü’ne ait 249 meteoroloji istasyonuna ait aylık ortalama sıcaklık ve aylık ortalama toplam yağış verileri ile 30 dakikalık (yaklaşık 1 km) çözünürlüğe sahip model çıktılarına ait küresel aylık ortalama sıcaklık ve aylık ortalama toplam yağış verileri kullanılmıştır. Bu iki farklı veri setine bağlı iki farklı Köppen-Geiger iklim tipleri dağılışı haritası oluşturulmuştur.  Köppen-Geiger iklim sınıflandırmasına göre Türkiye’de 13 farklı Köppen-Geiger iklim bölgesi olduğu ortaya konulmuştur. Bu sınıflandırmaya göre Akdeniz kıyıları “ılıman-kurak-sıcak yaza sahip iklim - Csa” sınıfında çıkarken, Konya Bölümü ve Güneydoğu Anadolu’nun güneyi “kurak-sıcak ve soğuk step iklim- Bsh-k” tipinde, Kuzeydoğu Anadolu’da ve Ağrı Dağı’nda ise ET yani tundra alanlar belirlenmiştir. Daha önceki çalışmalarda düşük çözünürlükte üretilen Türkiye Köppen-Geiger iklim bölgeleri bu çalışmada daha da ayrıntı kazanmıştır.


Sign in / Sign up

Export Citation Format

Share Document