scholarly journals Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

Science ◽  
1995 ◽  
Vol 270 (5234) ◽  
pp. 299-303 ◽  
Author(s):  
D. R. Sizemore ◽  
A. A. Branstrom ◽  
J. C. Sadoff
2006 ◽  
Vol 72 (11) ◽  
pp. 7091-7097 ◽  
Author(s):  
Valéria Dellaretti Guimarães ◽  
Silvia Innocentin ◽  
François Lefèvre ◽  
Vasco Azevedo ◽  
Jean-Michel Wal ◽  
...  

ABSTRACT The use of the food-grade bacterium Lactococcus lactis as a DNA delivery vehicle at the mucosal level is an attractive DNA vaccination strategy. Previous experiments showed that recombinant L. lactis expressing the Listeria monocytogenes inlA gene can deliver a functional gene into mammalian cells. Here, we explored the potential use of noninvasive L. lactis strains as a DNA delivery vehicle. We constructed two Escherichia coli-L. lactis shuttle plasmids, pLIG:BLG1 and pLIG:BLG2, containing a eukaryotic expression cassette with the cDNA of bovine β-lactoglobulin (BLG). The greatest BLG expression after transfection of Cos-7 cells was obtained with pLIG:BLG1, which was then used to transform L. lactis MG1363. The resulting L. lactis strain MG1363(pLIG:BLG1) was not able to express BLG. The potential of L. lactis as a DNA delivery vehicle was analyzed by detection of BLG in Caco-2 human colon carcinoma cells after 3 h of coincubation with (i) purified pLIG:BLG1, (ii) MG1363(pLIG:BLG1), (iii) a mix of MG1363(pLIG) and purified pLIG:BLG1, and (iv) MG1363. Both BLG cDNA and BLG expression were detected only in Caco-2 cells coincubated with MG1363(pLIG:BLG1). There was a decrease in the BLG cDNA level in Caco-2 cells between 24 and 48 h after coincubation. BLG expression by Caco-2 cells started at 24 h and increased between 24 and 72 h. BLG secretion by Caco-2 cells started 48 h after coincubation with MG1363(pLIG:BLG1). We conclude that lactococci can deliver BLG cDNA into mammalian epithelial cells, demonstrating their potential to deliver in vivo a DNA vaccine.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1501
Author(s):  
Sarah Brendle ◽  
Nancy Cladel ◽  
Karla Balogh ◽  
Samina Alam ◽  
Neil Christensen ◽  
...  

Human papillomavirus (HPV) 16 capsids have been chosen as a DNA delivery vehicle in many studies. Our preliminary studies suggest that HPV58 capsids could be better vehicles than HPV16 capsids to deliver encapsidated DNA in vitro and in vivo. In the current study, we compared HPV16, HPV58, and the cottontail rabbit papillomavirus (CRPV) capsids either as L1/L2 VLPs or pseudoviruses (PSVs) to deliver externally attached GFP-expressing DNA. Both rabbit and human cells were used to test whether there was a species-specific effect. DNA delivery efficiency was determined by quantifying either GFP-expressing cell populations or mean fluorescent intensities (MFI) by flow cytometry. Interestingly, CRPV and 58-VLPs and PSVs were significantly more efficient at delivering attached DNA when compared to 16-VLPs and PSVs. A capsid/DNA ratio of 2:1 showed the highest efficiency for delivering external DNA. The PSVs with papillomavirus DNA genomes also showed higher efficiency than those with irrelevant plasmid DNA. HPV16L1/58L2 hybrid VLPs displayed increased efficiency compared to HPV58L1/16L2 VLPs, suggesting that L2 may play a critical role in the delivery of attached DNA. Additionally, we demonstrated that VLPs increased in vivo infectivity of CRPV DNA in rabbits. We conclude that choosing CRPV or 58 capsids to deliver external DNA could improve DNA uptake in in vitro and in vivo models.


2019 ◽  
Vol XIV (2) ◽  
Author(s):  
I.Y. Bozo ◽  
A.A. Titova ◽  
M.N. Zhuravleva ◽  
A.I. Bilyalov ◽  
M.O. Mavlikeev ◽  
...  
Keyword(s):  

2020 ◽  
Vol 27 ◽  
Author(s):  
Antonis D. Tsiailanis ◽  
Andreas G. Tzakos ◽  
Thomas Mavromoustakos

: Drugs have to overcome numerous barriers to reach their desired therapeutic targets. In several cases drugs, especially the highly lipophilic molecules, suffer from low solubility and bioavailability and therefore their desired targeting is hampered. In addition, undesired metabolic products might be produced or off-targets could be recognized. Along these lines, nanopharmacology has provided new technological platforms, to overcome these boundaries. Specifically, numerous vehicle platforms such as cyclodextrins and calixarenes have been widely utilized to host lipophilic drugs such as antagonists of the angiotensin II AT1 receptor (AT1R), as well as quercetin and silibinin. The encapsulation of these drugs in supramolecules or other systems refines their solubility and metabolic stability, increases their selectivity and therefore decreases their effective dose and improves the therapeutic index. In this minireview we report on the formulations of Silibinin and AT1R antagonist candesartan in a 2-HP-β-cyclodextrin host molecule, which displayed enhanced cytotoxicity and increased silibinin’s and candesartan’s stability, respectively. Moreover we describe the encapsulation of quercetin in gold nanoparticles bearing a calixarene supramolecular host. Also the encapsulation of temozolomide in a calixarene nanocapsule has been described. Finally, we report on the activity enhancement that has been achieved upon using these formulations as well as the analytical and computational methods we used to characterize these formulations and explore the molecular interactions between the host and quest molecules.


2020 ◽  
Vol 20 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Shriya Agarwal ◽  
Vinayak Agarwal ◽  
Mugdha Agarwal ◽  
Manisha Singh

Abstract: In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.


Sign in / Sign up

Export Citation Format

Share Document