Free calcium at rest during "catch" in single smooth muscle cells

Science ◽  
1989 ◽  
Vol 243 (4896) ◽  
pp. 1367-1368 ◽  
Author(s):  
N Ishii ◽  
A. Simpson ◽  
C. Ashley
1987 ◽  
Vol 248 (3) ◽  
pp. 883-887 ◽  
Author(s):  
J Pfeilschifter ◽  
U T Rüegg

Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium.


Science ◽  
1986 ◽  
Vol 232 (4746) ◽  
pp. 87-90 ◽  
Author(s):  
BC Berk ◽  
RW Alexander ◽  
TA Brock ◽  
MA Gimbrone ◽  
RC Webb

Platelet-derived growth factor (PDGF) is a potent mitogen for vascular smooth muscle cells that has been implicated in the pathogenesis of atherosclerosis. The potential role of PDGF in the altered vasoreactivity of atherosclerotic vessels has been studied through an examination of its effects on contractility in the rat aorta. PDGF caused a concentration-dependent contraction of aortic strips and was significantly more potent on a molar basis than the classic vasoconstrictor peptide angiotensin II. Furthermore, PDGF increased the cytosolic free calcium concentration in cultured rat aortic smooth muscle cells. These observations suggest a new biological activity for PDGF that may contribute to the enhanced vasoreactivity of certain atherosclerotic vessels.


1991 ◽  
Vol 69 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Y. Wang ◽  
K. G. Baimbridge ◽  
D. A. Mathers

Smooth muscle cells were dissociated from conducting cerebral arteries of adult rats and maintained in culture for 2–4 days. The calcium-sensitive fluorescent probe, fura-2, was used to study the effect of the vasoconstrictor serotonin (5-HT) on the level of free intracellular Ca2+ in these cells. The baseline level of free intracellular calcium was 39 ± 3.6 nM. In 74 out of 110 cells, 5-HT application transiently increased the free Ca2+ content. This effect was dose-dependent and was suppressed by nanomolar concentrations of the 5-HT2 receptor antagonist, ketanserin. The 5-HT induced rise in free intracellular calcium was not prevented by the presence of Co2+, La3+, or nifedipine, blockers of voltage-sensitive calcium channels. These results indicate that 5-HT mobilizes intracellular Ca2+ in cultured smooth muscle cells derived from the rat cerebrovasculature. The mobilization of intracellular Ca2+ appears to be triggered by a 5-HT2 type receptor, although further pharmacological experiments are required to verify this hypothesis.Key words: serotonin, smooth muscle, cerebral artery, intracellular calcium, fura-2.


Sign in / Sign up

Export Citation Format

Share Document