scholarly journals Inhibition protects acquired song segments during vocal learning in zebra finches

Science ◽  
2016 ◽  
Vol 351 (6270) ◽  
pp. 267-271 ◽  
Author(s):  
D. Vallentin ◽  
G. Kosche ◽  
D. Lipkind ◽  
M. A. Long
Keyword(s):  
2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


2019 ◽  
Vol 121 (2) ◽  
pp. 530-548 ◽  
Author(s):  
Rachel C. Yuan ◽  
Sarah W. Bottjer

Procedural skill learning requires iterative comparisons between feedback of self-generated motor output and a goal sensorimotor pattern. In juvenile songbirds, neural representations of both self-generated behaviors (each bird’s own immature song) and the goal motor pattern (each bird’s adult tutor song) are essential for vocal learning, yet little is known about how these behaviorally relevant stimuli are encoded. We made extracellular recordings during song playback in anesthetized juvenile and adult zebra finches ( Taeniopygia guttata) in adjacent cortical regions RA (robust nucleus of the arcopallium), AId (dorsal intermediate arcopallium), and RA cup, each of which is well situated to integrate auditory-vocal information: RA is a motor cortical region that drives vocal output, AId is an adjoining cortical region whose projections converge with basal ganglia loops for song learning in the dorsal thalamus, and RA cup surrounds RA and receives inputs from primary and secondary auditory cortex. We found strong developmental differences in neural selectivity within RA, but not in AId or RA cup. Juvenile RA neurons were broadly responsive to multiple songs but preferred juvenile over adult vocal sounds; in addition, spiking responses lacked consistent temporal patterning. By adulthood, RA neurons responded most strongly to each bird’s own song with precisely timed spiking activity. In contrast, we observed a complete lack of song responsivity in both juvenile and adult AId, even though this region receives song-responsive inputs. A surprisingly large proportion of sites in RA cup of both juveniles and adults did not respond to song playback, and responsive sites showed little evidence of song selectivity. NEW & NOTEWORTHY Motor skill learning entails changes in selectivity for behaviorally relevant stimuli across cortical regions, yet the neural representation of these stimuli remains understudied. We investigated how information important for vocal learning in zebra finches is represented in regions analogous to infragranular layers of motor and auditory cortices during vs. after the developmentally regulated learning period. The results provide insight into how neurons in higher level stages of cortical processing represent stimuli important for motor skill learning.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zachary Daniel Burkett ◽  
Nancy F Day ◽  
Todd Haswell Kimball ◽  
Caitlin M Aamodt ◽  
Jonathan B Heston ◽  
...  

Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 13-24
Author(s):  
F. Johnson ◽  
S. W. Bottjer

Forebrain nuclei that control learned vocal behavior in zebra finches are anatomically distinct and interconnected by a simple pattern of axonal pathways. In the present study, we examined afferent regulation of neuronal survival during development of the robust nucleus of the archistriatum (RA). RA projection neurons form the descending motor pathway of cortical vocal-control regions and are believed to be directly involved in vocal production. RA receives afferent inputs from two other cortical regions, the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the higher vocal center (HVC). However, because the ingrowth of HVC afferent input is delayed, lMAN projection neurons provide the majority of afferent input to RA during early vocal learning. lMAN afferent input to RA is of particular interest because lMAN is necessary for vocal learning only during a restricted period of development. By making lesions of lMAN in male zebra finches at various stages of vocal development (20-60 days of age) and in adults (>90-days old), we asked whether the survival of RA neurons depends on lMAN afferent input, and if so whether such dependence changes over the course of vocal learning. The results showed that removal of lMAN afferent input induced the loss of over 40% of RA neurons among birds in early stages of vocal development (20 days of age). However, lMAN lesions lost the ability to induce RA neuron death among birds in later stages of vocal development (40 days of age and older). These findings indicate that many RA neurons require lMAN afferent input for their survival during early vocal learning, whereas the inability of lMAN lesions to induce RA neuron death in older birds may indicate a reduced requirement for afferent input or perhaps the delayed ingrowth of HVC afferent input (at approx. 35 days of age) provides an alternate source of afferent support. Removal of lMAN afferent input also dramatically increased the incidence of mitotic figures in RA, but only among 20-day-old birds at 2 days post-lesion. The early, acute nature of the mitotic events raises the possibility that cell division in RA may be regulated by lMAN afferent input.


2017 ◽  
Vol 284 (1859) ◽  
pp. 20171114 ◽  
Author(s):  
Nicole M. Baran ◽  
Samantha C. Peck ◽  
Tabitha H. Kim ◽  
Michael H. Goldstein ◽  
Elizabeth Adkins-Regan

Vocal learning from social partners is crucial for the successful development of communication in a wide range of species. Social interactions organize attention and enhance motivation to learn species-typical behaviour. However, the neurobiological mechanisms connecting social motivation and vocal learning are unknown. Using zebra finches ( Taeniopygia guttata ), a ubiquitous model for vocal learning, we show that manipulations of nonapeptide hormones in the vasopressin family (arginine vasotocin, AVT) early in development can promote or disrupt both song and social motivation. Young male zebra finches, like human infants, are socially gregarious and require interactive feedback from adult tutors to learn mature vocal forms. To investigate the role of social motivational mechanisms in song learning, in two studies, we injected hatchling males with AVT or Manning compound (MC, a nonapeptide receptor antagonist) on days 2–8 post-hatching and recorded song at maturity. In both studies, MC males produced a worse match to tutor song than controls. In study 2, which experimentally controlled for tutor and genetic factors, AVT males also learned song significantly better compared with controls. Furthermore, song similarity correlated with several measures of social motivation throughout development. These findings provide the first evidence that nonapeptides are critical to the development of vocal learning.


2021 ◽  
Author(s):  
Carlos A. Rodriguez-Saltos ◽  
Aditya Bhise ◽  
Prasanna Karur ◽  
Ramsha Nabihah Khan ◽  
Sumin Lee ◽  
...  

In songbirds, learning to sing is a highly social process that likely involves social reward. Here, we hypothesized that the degree to which a juvenile songbird learns a song depends on the degree to which it finds that song rewarding to hear during vocal development. We tested this hypothesis by measuring song preferences in young birds during song learning and then analyzing their adult songs. Song preferences were measured in an operant key-pressing assay. Juvenile male zebra finches (Taeniopygia guttata) had access to two keys, each of which was associated with a higher likelihood of playing the song of their father or that of another familiar adult ("neighbor"). To minimize the effects of exposure on learning, we implemented a reinforcement schedule that allowed us to detect preferences while balancing exposure to each song. On average, the juveniles significantly preferred the father's song early during song learning, before they were themselves singing. At around post-hatch day 60, their preference shifted to the neighbor's song. At the end of the song learning period, we recorded the juveniles' songs and compared them to the father's and the neighbor's song. All of the birds copied father's song. The accuracy with which the father's song was imitated was positively correlated with the peak strength of the preference for the father's song during the sensitive period. Our results show that preference for a social stimulus, in this case a vocalization, predicted social learning during development.


2021 ◽  
Author(s):  
Matthew Davenport ◽  
Ha Na Choe ◽  
Hiroaki Matsunami ◽  
Erich D Jarvis

Zebra finches are sexually dimorphic vocal learners. Males learn to sing by imitating mature conspecifics, but females do not. The lack of vocal learning in females is associated with anatomical differences in the neural circuits responsible for vocal learning, including the atrophy of several brain regions during development. However, this atrophy can be prevented and song learning retained in females after pharmacological estrogen treatment. Little is known about the genetic machinery controlling this sex and estrogen responsive song system development. To screen for drivers, we performed an unbiased analysis of transcriptomes from song control nuclei and surrounding motor regions in zebra finches of either sex treated with 17-B-estradiol or vehicle until sacrifice on day 30, when divergence between the sexes is anatomically apparent. Utilizing the newly assembled autosomes and sex chromosomes from the zebra finch Vertebrate Genomes Project assemblies, we identified correlated gene modules that were associated to song nuclei in a sex and estradiol dependent manner. Female estradiol treated HVC, in the vocal learning circuit, acquired the smallest of the modular specializations observed in male HVC. This module was enriched for genes governing anatomical development, and its specilization was dispraportionately influenced by the expression of Z sex chromosome transcripts in HVC. We propose that vocal learning may be prevented in female zebra finches via the suppression of an estrogen inducible Z chromosome cis-acting regulatory element.


2006 ◽  
Vol 5 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Miki TAKAHASI ◽  
Hiroko KAGAWA ◽  
Maki IKEBUCHI ◽  
Kazuo OKANOYA

Behaviour ◽  
2020 ◽  
Vol 157 (3-4) ◽  
pp. 231-265
Author(s):  
Adriana Diez ◽  
Scott A. MacDougall-Shackleton

Abstract Vocal learning in songbirds is guided by experience and experience-independent factors. Previously, lineages of zebra finches founded by isolate-reared tutors showed cultural evolution to wild-type song. This suggests that experience-independent biases affect song development even in the absence of wild-type song. We hypothesized that cultural evolution of song depends on both experience-independent biases and tutor songs available. We predicted that songs more distant from wild-type would take longer to culturally evolve toward wild-type features. We bred zebra finches in three groups of lineages in which offspring of each generation served as tutors for the next. Lineages were founded with males singing wild-type song, isolate song, or heterospecific song. The two experimental lineages exhibited rapid cultural evolution of song with many temporal and spectral features converging to wild-type within two generations. However the rate of change differed depending on song features measured, and took longer for lineages founded with heterospecific song.


Sign in / Sign up

Export Citation Format

Share Document