scholarly journals In situ collection of dust grains falling from Saturn’s rings into its atmosphere

Science ◽  
2018 ◽  
Vol 362 (6410) ◽  
pp. eaat3185 ◽  
Author(s):  
Hsiang-Wen Hsu ◽  
Jürgen Schmidt ◽  
Sascha Kempf ◽  
Frank Postberg ◽  
Georg Moragas-Klostermeyer ◽  
...  

Saturn’s main rings are composed of >95% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft’s traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn’s dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred “ring rain.” Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30% of infalling grains, a higher percentage than the bulk silicate content of the rings.

2021 ◽  
Author(s):  
Simon Linti ◽  
Jon Hillier ◽  
Christian Fischer ◽  
Hsiang-Wen Hsu ◽  
Mario Trieloff ◽  
...  

<p>During the final mission phase, the Cassini spacecraft travelled through the gap between Saturn and its innermost D ring. One goal of these highly inclined orbits was sampling the dust population, mostly made of impact ejecta from the main rings, in the vicinity of the planet. These in situ measurements were primarily carried out by the Cosmic Dust Analyzer (CDA) onboard the spacecraft, which provided time-of-flight mass spectra of individual ice and dust grains, mostly between about 10 and 50 nm in size. Here we present an update on the composition of the silicate dust fraction stemming from Saturn’s main rings, which makes up about 30 % of the observed particles with water ice being the remaining fraction [1].</p> <p>Elemental analysis of the silicate spectra was performed using an updated deconvolution method, based on a technique originally applied to the interpretation of CDA interstellar dust measurements [2]. Neighboring spectral peaks due to mineral-forming ions such as Mg<sup>+</sup>, Al<sup>+</sup> and Si<sup>+</sup> are often unresolvable, because of CDA’s relatively low (m/dm = 20–50) mass resolution [3]. Therefore, application of a deconvolution technique is required to disentangle the peak interferences and derive valuable compositional information. The robustness of the applied method has been tested and optimized through comparison with an independent automated fit algorithm. In order to calculate elemental abundances within the particles, the derived ion abundances were combined with experimentally-determined relative sensitivity factors (RSFs) [4]. To provide context to the measured element ratios, we compared them with a variety of space-relevant materials. We find an overlap with chondritic material for Mg/Si and Fe/Mg ratios. The observed range within the element ratios, however, indicates the contribution of a variety of minerals such as olivine, plagioclase or pyroxenes. Although our results agree with realistic mineral compositions, the calculated abundances of Al<sup>+</sup> ions are still relatively uncertain and can be seen as an upper limit.</p> <p>Additionally, we present the results of a dynamical model, which allow us to derive the likely source region within the main rings of individually detected silicate grains. We find the C and B rings to be the most likely sources of the vast majority of grains with the D ring being only a minor source. Currently an analysis of compositional diversity between the different ring segments is under way.</p> <p> </p> <p><strong>References</strong></p> <p>[1] H.-W. Hsu et al. (2018) In situ collection of dust grains falling from Saturn’s rings into its atmosphere. Science 362.</p> <p>[2] N. Altobelli et al. (2016) Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 352, 312–318.</p> <p>[3] R. Srama et al. (2004) The Cassini Cosmic Dust Analyzer. Space Science Reviews 114, 465–518.</p> <p>[4] K. Fiege et al. (2014) Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles. Icarus 241, 336–345.</p>


2003 ◽  
Author(s):  
R. T. Short ◽  
Gottfried P. Kibelka ◽  
Robert H. Byrne ◽  
David Hollander

2000 ◽  
Vol 41 (4-5) ◽  
pp. 301-308 ◽  
Author(s):  
N. Noda ◽  
H. Ikuta ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Fluorescent antibody technique by the monoclonal antibody method is very useful and helpful for the rapid quantification and in situ detection of the specific bacteria like nitrifiers in a mixed baxterial habitat such as a biofilm. In this study, twelve monoclonal antibodies against Nitrosomonas europaea (IFO14298) and sixteen against Nitrobacter winogradskyi (IFO14297) were raised from splenocytes of mice (BALB/c). It was found that these antibodies exhibited little cross reactivity against various kinds of heterotrophic bacteria. The direct cell count method using monoclonal antibodies could exactly detect and rapidly quantify N. europaea and N. winogradskyi. Moreover, the distribution of N. europaea and N. winogradskyi in a biofilm could be examined by in situ fluorescent antibody technique. It was shown that most of N. winogradskyi existed near the surface part and most of N. europaea existed at the inner part of the polyethylene glycol (PEG) gel pellet, which had entrapped activated sludge and used in a landfill leachate treatment reactor. It was suggested that this monoclonal antibody method was utilized for estimating and controlling the population of nitrifying bacteria as a quick and favorable tool.


2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


Optik ◽  
2021 ◽  
pp. 167711
Author(s):  
Enlai Wan ◽  
Zhongmou Sun ◽  
Yuzhu Liu

Sign in / Sign up

Export Citation Format

Share Document