Structure and dynamics of the yeast SWR1-nucleosome complex

Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. eaat7716 ◽  
Author(s):  
Oliver Willhoft ◽  
Mohamed Ghoneim ◽  
Chia-Liang Lin ◽  
Eugene Y. D. Chua ◽  
Martin Wilkinson ◽  
...  

The yeast SWR1 complex exchanges histone H2A in nucleosomes with Htz1 (H2A.Z in humans). The cryo–electron microscopy structure of the SWR1 complex bound to a nucleosome at 3.6-angstrom resolution reveals details of the intricate interactions between components of the SWR1 complex and its nucleosome substrate. Interactions between the Swr1 motor domains and the DNA wrap at superhelical location 2 distort the DNA, causing a bulge with concomitant translocation of the DNA by one base pair, coupled to conformational changes of the histone core. Furthermore, partial unwrapping of the DNA from the histone core takes place upon binding of nucleosomes to SWR1 complex. The unwrapping, as monitored by single-molecule data, is stabilized and has its dynamics altered by adenosine triphosphate binding but does not require hydrolysis.

2021 ◽  
Author(s):  
Kayo Nozawa ◽  
Yoshimasa Takizawa ◽  
Leonidas Pierrakeas ◽  
Kazumi Saikusa ◽  
Satoko Akashi ◽  
...  

The canonical nucleosome, which represents the predominant packaging unit in eukaryotic chromatin, has an octameric core made up of two histone H2A-H2B and H3-H4 dimers with ~147 base-pair (bp) DNA wrapping around it. Non-nucleosome particles with alterative histone stoichiometries and DNA wrapping configurations have been found, and they could profoundly influence genome architecture and function. Here we solved the structure of the H3-H4 octasome, which is a nucleosome-like particle with a core made up of four H3-H4 dimers. Two conformations, open and closed, are determined at 3.9 angstrom and 3.6 angstrom resolutions by cryo-electron microscopy, respectively. The H3-H4 octasome, made up of a di-tetrameric core, is wrapped by ~120 bp DNA in 1.5 negative superhelical turns. The symmetrical halves are connected by a unique H4-H4' interface along the dyad axis. In vivo crosslinking of cysteine probes placed at another unique H3-H3' interface demonstrated the existence of the H3-H4 octasome in cells.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Tomáš Kouba ◽  
Jiří Pospíšil ◽  
Jarmila Hnilicová ◽  
Hana Šanderová ◽  
Ivan Barvík ◽  
...  

ABSTRACT Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP. IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.


2015 ◽  
Vol 89 (23) ◽  
pp. 12108-12117 ◽  
Author(s):  
Jian Guan ◽  
Stephanie M. Bywaters ◽  
Sarah A. Brendle ◽  
Hyunwook Lee ◽  
Robert E. Ashley ◽  
...  

ABSTRACTThe human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus. The structure of human papillomavirus 16 (HPV16) complexed with H16.U4 fragments of antibody (Fab) was solved by cryo-electron microscopy (cryo-EM) image reconstruction. Atomic structures of virus and Fab were fitted into the corresponding cryo-EM densities to identify the antigenic epitope. The antibody footprint mapped predominately to the L1 C-terminal arm with an additional contact point on the side of the capsomer. This footprint describes an epitope that is presented capsid-wide. However, although the H16.U4 epitope suggests the presence of 360 potential binding sites exposed in the capsid valley between each capsomer, H16.U4 Fab bound only to epitopes located around the icosahedral five-fold vertex of the capsid. Thus, the binding characteristics of H16.U4 defined in this study showed a distinctive selectivity for local conformation-dependent interactions with specific L1 invading arms between five-fold related capsomers.IMPORTANCEHuman papillomavirus 16 (HPV16) is the most prevalent oncogenic genotype in HPV-associated anogenital and oral cancers. Here we use cryo-EM reconstruction techniques to solve the structures of the HPV16 capsid complexes using H16.U4 fragment of antibody (Fab). Different from most other antibodies directed against surface loops, H16.U4 monoclonal antibody is unique in targeting the C-terminal arm of the L1 protein. This monoclonal antibody (MAb) is used throughout the HPV research community in HPV serological and vaccine development and to define mechanisms of HPV uptake. The unique binding mode of H16.U4 defined here shows important conformation-dependent interactions within the HPV16 capsid. By targeting an important structural and conformational epitope, H16.U4 may identify subtle conformational changes in different maturation stages of the HPV capsid and provide a key probe to analyze the mechanisms of HPV uptake during the early stages of virus infection. Our analyses precisely define important conformational epitopes on HPV16 capsids that are key targets for successful HPV prophylactic vaccines.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1454-1459 ◽  
Author(s):  
Zhubing Shi ◽  
Haishan Gao ◽  
Xiao-chen Bai ◽  
Hongtao Yu

As a ring-shaped adenosine triphosphatase (ATPase) machine, cohesin organizes the eukaryotic genome by extruding DNA loops and mediates sister chromatid cohesion by topologically entrapping DNA. How cohesin executes these fundamental DNA transactions is not understood. Using cryo–electron microscopy (cryo-EM), we determined the structure of human cohesin bound to its loader NIPBL and DNA at medium resolution. Cohesin and NIPBL interact extensively and together form a central tunnel to entrap a 72–base pair DNA. NIPBL and DNA promote the engagement of cohesin’s ATPase head domains and ATP binding. The hinge domains of cohesin adopt an “open washer” conformation and dock onto the STAG1 subunit. Our structure explains the synergistic activation of cohesin by NIPBL and DNA and provides insight into DNA entrapment by cohesin.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Joseph Atherton ◽  
Irene Farabella ◽  
I-Mei Yu ◽  
Steven S Rosenfeld ◽  
Anne Houdusse ◽  
...  

Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles—including their nucleotide-free states—at ∼7 Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin–microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface.


Virology ◽  
2015 ◽  
Vol 486 ◽  
pp. 121-133 ◽  
Author(s):  
Son Pham ◽  
Thibault Tabarin ◽  
Megan Garvey ◽  
Corinna Pade ◽  
Jérémie Rossy ◽  
...  

2016 ◽  
Vol 90 (21) ◽  
pp. 9733-9742 ◽  
Author(s):  
Lindsey J. Organtini ◽  
Hyunwook Lee ◽  
Sho Iketani ◽  
Kai Huang ◽  
Robert E. Ashley ◽  
...  

ABSTRACT Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sigrid Noreng ◽  
Arpita Bharadwaj ◽  
Richard Posert ◽  
Craig Yoshioka ◽  
Isabelle Baconguis

The epithelial sodium channel (ENaC), a member of the ENaC/DEG superfamily, regulates Na+ and water homeostasis. ENaCs assemble as heterotrimeric channels that harbor protease-sensitive domains critical for gating the channel. Here, we present the structure of human ENaC in the uncleaved state determined by single-particle cryo-electron microscopy. The ion channel is composed of a large extracellular domain and a narrow transmembrane domain. The structure reveals that ENaC assembles with a 1:1:1 stoichiometry of α:β:γ subunits arranged in a counter-clockwise manner. The shape of each subunit is reminiscent of a hand with key gating domains of a ‘finger’ and a ‘thumb.’ Wedged between these domains is the elusive protease-sensitive inhibitory domain poised to regulate conformational changes of the ‘finger’ and ‘thumb’; thus, the structure provides the first view of the architecture of inhibition of ENaC.


2017 ◽  
Author(s):  
Matthieu P. M. H. Benoit ◽  
Ana B. Asenjo ◽  
Hernando Sosa

SummaryKinesin-13s constitute a distinct group within the kinesin superfamily of motor proteins that promotes microtubule depolymerization and lacks motile activity. The molecular mechanism by which the kinesins depolymerize microtubules and are adapted to perform a seemingly very different activity from other kinesins is still unclear. To address this issue we obtained near atomic resolution cryo-electron microscopy (cryo-EM) structures of Drosophila melanogaster kinesin-13 KLP10A constructs bound to curved or straight tubulin in different nucleotide states. The structures show how nucleotide induced conformational changes near the catalytic site are coupled with kinesin-13-specific structural elements to induce tubulin curvature leading to microtubule depolymerization. The data highlight a modular structure that allows similar kinesin core motor-domains to be used for different functions, such as motility or microtubule depolymerization.


Sign in / Sign up

Export Citation Format

Share Document